
NmzIntegrate 1.2

Winfried Bruns and Christof Söger

mailto:normaliz@uos.de

http://www.math.uos.de/normaliz

Contents

1 The objectives of NmzIntegrate 2

2 Major changes in this version 4

3 Input files 4
3.1 Basic input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Auxiliary files produced by Normaliz . . . . . . . . . . . . . . . . .. . . . 4
3.3 The polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Running NmzIntegrate 6

5 The output file 7
5.1 A generalized Ehrhart series . . . . . . . . . . . . . . . . . . . . . . .. . . 7
5.2 An integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Distribution and installation 10

7 Compilation 10

8 Copyright and how to cite 11

9 History 11
9.1 1.0→ 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9.2 1.1→ 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1

mailto:normaliz@uos.de
http://www.math.uos.de/normaliz


1 The obje
tives of NmzIntegrate

We assume in the following that the reader is familiar with Normaliz, in particular with its
treatment of Ehrhart series and quasipolynomials. NmzIntegrate 1.2 requires Normaliz 2.11.

Normaliz computes certain data for a monoid

M =C∩L

whereC ⊂ Rn is a rational, polyhedral and pointed cone, andL ⊂ Zn is a sublattice. These
data are defined by the input to Normaliz. NmzIntegrate requires thatM has been endowed
with a grading deg (see the manual of Normaliz 2.11).

For such graded monoids Normaliz can compute the volume of the rational polytope

P= {x∈ R+M : degx= 1},

the Ehrhart series ofP, and the quasipolynomial representing the Ehrhart function. (Here
R+M is the cone generated by the elements ofM; it may be smaller thanC if L has rank< n.)

These computations can be understood as integrals of the constant polynomialf = 1, namely
with respect to the counting measure defined byL for the Ehrhart function, and with respect to
the (suitably normed) Lebesgue measure for the volume. NmzIntegrate generalizes these com-
putations to arbitrary polynomialsf in n variables with rational coefficients. (Mathematically,
there is no need to restrict oneself to rational coefficientsfor f .)

More precisely, set
E( f ,k) = ∑

x∈M,degx=k

f (x),

and callE( f ,_) thegeneralized Ehrhart functionfor f . (With f = 1 we simply count lattice
points.) Thegeneralized Ehrhart seriesis the ordinary generating function

Ef (t) =
∞

∑
k=0

E( f ,k)tk.

It turns out thatEf (t) is the power series expansion of a rational function at the origin, and can
always be written in the form

Ef (t) =
Q(t)

(1− tℓ)totdegf+rankM , Q(t) ∈Q[t], degQ< totdegf + rankM.

Here totdegf is the total degree of the polynomialf , andℓ is the least common multiple of
the degrees of the extreme integral generators ofM. See [2] for an elementary account and the
algorithm used by NmzIntegrate.

NmzIntegrate 1.2, like Normaliz 2.11 can compute Ehrhart series for semiopencones. For
them the monoidM is replaced by the set

M′ =C′∩L

2



whereC′ =C\F andF is the union of a set of faces (not necessarily facets) ofC. What has
been said above about the structure of the generalized Ehrhart series remains true. We discuss
an example in Section 5.

It follows from the general theory of rational generating functions that there exists a quasipoly-
nomialq(k) with rational coefficients and of degree≤ totdegf + rankM−1 that evaluates to
E( f ,k) for all k ≥ 0. A quasipolynomial is a “polynomial” with periodic coefficients: there
exist aperiodπ ∈ N and true polynomialsq j ∈Q[X], j = 0, . . . ,π −1, such that

q(k) = q( j)(k) if k≡ j (π).

Each of the polynomialsq( j) is given as

q( j)(k) = q( j)
0 +q( j)

1 X+ · · ·+q( j)
totdegf+rankM−1Xtotdegf+rankM−1

with constant coefficients inQ. The periodπ dividesℓ.

Let m= totdegf and fm be the degreem homogeneous component off . By letting k go to
infinity and approximatingfm by a step function that is constant on the meshes of1

kL (with
respect to a fixed basis), one sees

q( j)
totdegf+rankM−1 =

∫

P
fmdλ

wheredλ is the Lebesgue measure that takes value 1 on a basic mesh ofL∩RM in the hyper-

plane of degree 1 elements inRM. In particular, thevirtual leading coefficient q( j)
totdegf+rankM−1

is constant and depends only onfm. If the integral vanishes, the quasipolynomialq has smaller
degree, and the true leading coefficient need not be constant. Following the terminology of
commutative algebra and algebraic geometry, we call

(totdegf + rankM−1)! ·qtotdegf+rankM−1

the virtual multiplicity of M and f . It is an integer if fm has integral coefficients andP is a
lattice polytope.

Since a semiopen coneC′ differs from its closure in a set of measure 0, the passage toC′

does not change the Lebesgue integrals just mentioned, and is therefore irrelevant for their
computation.

NmzIntegrate computes

(ES) the generalized Ehrhart series and its quasipolynomial,
(Int) the Lebesgue integral off overP, or
(LC) the virtual leading coefficient and the virtual multiplicity.

The user controls the type of computation by a command line option. (ES) contains (LC), and
(LC) is just the evaluation of (Int) on the highest homogeneous component off . It is presently
not possible to compute the Ehrhart series and the integral together if f is not homogeneous,
but the two computations can be combined in one run of NmzIntegrate.

3



Acknowledgement.We gratefully acknowledge the support we received from JohnAbbott and
Anna Bigatti in using CoCoALib, on which the multivariate polynomial algebra in NmzInte-
grate is based.

The development of Normaliz is currently supported by the DFG SPP 1489 “Experimentelle
Methoden in Algebra, Geometrie und Zahlentheorie”.

2 Major 
hanges in this version

1. Generalized Ehrhart series of semiopen cones.

2. More flexible input of polynomials.

3. NmzIntegrate 1.2 requires Normaliz 2.11.

3 Input �les

NmzIntegrate can be used in two ways:

1. by direct call from the command line,

2. by call from within Normaliz with the appropriate options.

If NmzIntegrate misses an input file that should have been produced by Normaliz, it calls
Normaliz and makes it produce the missing file(s). Normaliz is also called if a file produced
by it is older than the Normaliz input file, provided the latter is accessible.

For mutual calls it is necessary that the executables of Normaliz and NmzIntegrate reside in
the same directory.

3.1 Basi
 input �les

The files<project>.in and<polynomial>.pnm must be provided by the user. Normaliz needs
<project>.in in order to produce the files read by NmzIntegrate. The file<polynomial>.pnm

contains the polynomial to be integrated.

Unless the user defines<polynomial> explicitly (see below), NmzIntegrate sets<polymomial>=

<project>. The explicit choice of the<polynomial> is only possible if NmzIntegrate is called
from the command line.

3.2 Auxiliary �les produ
ed by Normaliz

One runs Normaliz with the option

-T (or -y) for (Int) and (LC),
-y for (ES).

4



(It is allowed to combine-T and-y.) If NmzIntegrate calls Normaliz, then it chooses these
options automatically.

This will produce the files with the following suffixes (in addition to <project>.out and
possibly further output files determined by the Normaliz options-f and-a):

-T inv, tgn, tri
-y inv, tgn, dec.

NmzIntegrate reads

• the grading and the rank from<project>.inv,
• the rays of the triangulation from<project>.tgn,
• the triangulation from<project>.tri (for (Int) and (LC)) and
• the Stanley decomposition from<project>.dec (for (ES)).

If <project>.tri does not exist for one of the tasks (Int) or (LC), NmzIntegrate checks for
the existence of<project>.dec and reads the triangulation from it.

NmzIntegrate itself does not read<project>.in nor any other output file of Normaliz than
those just mentioned.

3.3 The polynomial

The polynomial is read from the file<polynomial>.pnm. The polynomial can be defined by
a usual polynomial expression using rational coefficients,addition, subtraction, multiplica-
tion and exponentiation, following the standard precedence rules for the evaluation of such
expressions.

Note:

1. The names of the variables are fixed:x[1],. . . ,x[<n>] where<n> represents the num-
bern.

2. An explicit multiplication sign* is necessary for all multiplications, in particular be-
tween a coefficient and an indeterminate or between indeterminates.

Examples:

1/120*(x[1]+x[2]^2)*(-2*x[3]*x[4])^2+x[3]

is a well formed input polynomial, but

1/120(x[1]+x[2]^2)*(-2x[3]*x[4])^2+x[3]

is not allowed.

NmzIntegrate is now using the CoCoALib input function for polynomials. In the previous
version some multiplication signs that are now necessary had to be omitted.

5



4 Running NmzIntegrate

There are three ways to run NmzIntegrate:

1. direct call from the command line,

2. call from Normaliz (see Normaliz manual),

3. from jNormaliz via Normaliz.

The shortest possible command to start NmzIntegrate is

nmzIntegrate <project>

This will run the default computation (ES) on the<project>. The full input syntax is

nmzIntegrate [-cEIL] [-x=<T>] [-F=<polynomial>] <project>

where-c and-x=<T> have the same meaning as for Normaliz:

-c activates the verbose mode in which control information is written to the terminal,
-x=<T> limits the number of parallel threads to<T>.

The following options control the type of computation:

-E activates the computation (ES) (the default mode, can be omitted),
-I activates the computation (Int),
-L activates the computation (LC).

These three options can be accumulated. If at least two options are set, the computations are
carried out according to the following rules:

• If -E is present,-L will be suppressed since its result is contained in that of-E.
• If -I is present, then it will be suppressed if one of-E or -L is set and the polynomial is

homogeneous since-L and-I are identical for homogeneous polynomials.

If two different computations are carried out, then their output will appear consecutively in the
output file.

If -F=<polynomial> appears, then the polynomial is read from the file<polynomial>.pnm.
Note that<polynomial>.pnm must reside in the directory defined by<project>. It is not
possible to prefix<polynomial> by a path name (which may be necessary for<project>).

If the option-F=<polynomial> is omitted, the polynomial is read from<project>.pnm.

The options-c and-x=<T> are passed form Normaliz to NmzIntegrate and vice versa. Nmz-
Integrate passes also the option-e to Normaliz as a precaution against overflow errors. If such
an error occurs or it is a priori clear that 64 bit precision isnot sufficient for Normaliz, it must
be run beforehand with the option-B (and-T or -y). NmzIntegrate itself works always with
infinite precision.

It is not possible (presently) to use the option<polynomial>.pnm if NmzIntegrate is called
from Normaliz.

Note that NmzIntegrate may need much more memory than Normaliz, especially with a high
number of parallel threads, due to the fact that it may have tocope with very long polynomials.

6



5 The output �le

If the option-F=<polynomial> is not set, the output is written to the file<project>.intOut
(so that it is clearly distinguished from the Normaliz output file). If -F=<polynomial> appears,
the output is written to<project>.<polynomial>.intOut.

NmzIntegrate factors the polynomial, and the factorization is written to the output file. For the
computation (LC) the polynomial is first replaced by its leading form, and the output file then
contains the factorization of the leading form.

The output file is essentially self explanatory. Nevertheless we have added two examples
below. In addition you can have a look at the files

rationalES.intOut, rationalInt.intOut and rationalLC.intOut.

They were all produced from the example filerational.in in the Normaliz distribution and
the filerational.pnm, andrational.intOut was suitably renamed.

The directoryexample contains further input files suited for NmzIntegrate — look out for files
with the suffixpnm.

5.1 A generalized Ehrhart series

We choose an example from combinatorial voting theory whichis discussed in more detail in
[2]. The fileCondParSymm.in from the directoryexamples contains the following (typeset in
two columns):

1 3

8 8

1 1 1 1 1 1 1 1 1 -1 1 1 1 -1 -1 -1

signs 1 1 -1 1 -1 1 -1 -1

1 1 1 1 -1 -1 -1 1 -1

8 inequalities

1 1 1 1 1 1 1 1

grading

The signs describe the nonnegative orthant inR8 and the linear formsλ1,λ2,λ3 specified
by theinequalities cut out a cone from it by the conditionsλi(x) ≥ 0, i = 1, . . . ,3. The
grading gives degree 1 to every coordinate. The polynomial (counting the preimages ofx
under a projectionR24

+ → R8
+) is

f (x) =

(

x1+5
5

)

(x2+1)(x3+1)(x4+1)(x5+1)(x6+1)(x7+1)

(

x8+5
5

)

.

It is given inCondParSymm.pnm by

1/120*(x[1]+5)*(x[1]+4)*(x[1]+3)*(x[1]+2)*(x[1]+1)*

(x[2]+1)*(x[3]+1)*(x[4]+1)*(x[5]+1)*(x[6]+1)*(x[7]+1)*

1/120*(x[8]+5)*(x[8]+4)*(x[8]+3)*(x[8]+2)*(x[8]+1)

7



From the Normaliz directory we invoke NmzIntegrate by

nmzIntegrate -c example/CondParSymm

(replace the slash by a backslash in MS Windows, and similarly below). The fileCondParSymm.
intOut starts with the factorization:

Factorization of polynomial:

x[8] +5 mult 1

x[8] +4 mult 1

...

x[1] +1 mult 1

Remaining factor 1/14400

Next we find the information on the Hilbert series:

Generalized Ehrhart series:

1 5 133 363 ... 481 15 6

Common denominator of coefficients: 1

Series denominator with 24 factors:

1: 1 2: 14 4: 9

It is to be read as follows:

HM, f (t) =
1+ t +5t1+133t2+363t3+ · · ·+481t38+15t39+6t40

(1− t1)(1− t2)14(1− t4)9

Next we find the presentation ofHM, f (t) as a rational function with coprime numerator and
denominator (which in this case is the same as the previous one, except that the denominator
is factored differently):

Generalized Ehrhart series with cyclotomic denominator:

1 5 133 363 ... 481 15 6

Common denominator of coefficients: 1

Series cyclotomic denominator:

1: 24 2: 23 4: 9

This means

HM, f (t) =
1+ t +5t1+133t2+363t3+ · · ·+481t38+15t39+6t40

ζ1ζ 23
2 ζ 9

4

whereζi is thei-th cyclotomic polynomial. Now the quasipolynomial:

Generalized Ehrhart quasi-polynomial of period 4:

0: 6939597901822221635907747840000 20899225...000000 ... 56262656

1: 2034750310223351797008092160000 7092764...648000 ... 56262656

2: 6933081849299152199775682560000 20892455...168000 ... 56262656

3: 2034750310223351797008092160000 7092764...648000 ... 56262656

with common denominator: 6939597901822221635907747840000

8



The left most column indicates the residue class modulo the period, and the numbers in line
k are the coefficients of thek-th polynomial after division by the common denominator. The

list starts withq(k)0 and ends with (the constant)q(k)23 . The interpretation of the remaining data
is obvious:

Degree of (quasi)polynomial: 23

Expected degree: 23

Virtual multiplicity: 1717/8192

Now suppose we want to work with the strict inequalitiesλi(x) > 0, as customary in voting
theory (in order to exclude draws). Then we replaceinequalities by excluded_faces to
obtain the fileCondParSmmSemi.in. the polynomial hasn’t changed, and so NmzIntegrate is
called by

nmzIntegrate -c -F=CondParSymm example/CondParSymmSemi

The output file is now inCondParSymmSemi.CondParSymm.intOut.

5.2 An integral

The paper [3] asks for the computation of the integral
∫

[0,1]m

∑x=t

(x1 · · ·xm)
n−m ∏

1≤i< j≤m

(x j −xi)
2dµ

taken over the intersection of the unit cube inRm and the hyperplane of constant coordinate
sumt. It is supposed thatt ≤ m≤ n. We compute the integral fort = 2, m= 4 andn= 6.

The polytope is specified in the input filej462.in (typeset in 3 columns):

8 0 0 0 1 0 1

5 -1 0 0 0 1 5

1 0 0 0 0 0 -1 0 0 1 -1 -1 -1 -1 2

0 1 0 0 0 0 0 -1 0 1 equations

0 0 1 0 0 0 0 0 -1 1

inequalities

The 8 inequalities describe the unit cube inR4 by the 0≤ zi ≤ 1 and the equation gives the
hyperplanez1+ · · ·+z4 = 2. There is no need to specify the grading since Normaliz findsit
because the polytope is a lattice polytope. If one doesn’t know this in advance, it is better to
give the grading explicitly by

1

5

0 0 0 0 1

grading

9



See the Normaliz documentation, Section 3.2.3 how to define rational polytopes by inequali-
ties and equations.

The polynomial does not depend ont so that we can use the same polynomial for varioust. It
is contained inj46.pnm:

(x[1]*x[2]*x[3]*x[4])^2*(x[1]-x[2])^2*(x[1]-x[3])^2*

(x[1]-x[4])^2*(x[2]-x[3])^2*(x[2]-x[4])^2*(x[3]-x[4])^2

NmzIntegrate is called by

nmzIntegrate -cI -F=j46 example/j462

It produces the output inj462.j46.intOut:

Factorization of polynomial: x[1] mult 2

x[4] mult 2 x[1] -x[2] mult 2

x[3] mult 2 x[1] -x[3] mult 2

x[3] -x[4] mult 2 x[1] -x[4] mult 2

x[2] mult 2 Remaining factor 1

x[2] -x[3] mult 2

x[2] -x[4] mult 2 Integral: 27773/29515186701000

6 Distribution and installation

The basic package (source, documentation, examples) for NmzIntegrate is contained in the
basic package of Normaliz that you can download from

http://www.math.uos.de/normaliz

The installation is described in the Normaliz documentation.

Likewise the executable of NmzIntegrate is contained in theNormaliz executable package for
your system. Therefore NmzIntegrate does not need a separate installation.

7 Compilation

Before the compilation of NmzIntegrate you must compile Normaliz 2.11 and CoCoALib
0.99533 [1] (not contained in the Normaliz distribution).

First compile Normaliz including libnormaliz by runningmake in the source directory. For the
compilation of CoCoALib run

./configure --threadsafe-hack

in the CoCoA root directory. The optionthreadsafe-hack is necessary to ensure correct
parallel execution of nmzIntegrate. If you want to use Normaliz inside CoCoA or CoCoALib
also add

10

http://www.math.uos.de/normaliz


--with-libnormaliz=/path/to/Normaliz2.11/source/libnormaliz/libnormaliz.a

to the configuration call, where the path to Normaliz has to beadjusted to your system. If the
configuration was successful,

make library

will compile CoCoALib.

At last compile nmzIntegrate. Navigate to the directorygenEhrhart and runmake. You should
move the executablenmzIntegrate to the directory that containsnormaliz.

Depending on the location of CoCoALib, you may have to adjustthe path leading to it in the
Makefile in genEhrhart.

These instructions apply for Linux and Mac OS. If you should want to compile NmzIntegrate
under MS Windows, please contact the authors.

8 Copyright and how to 
ite

NmzIntegrate 1.1 is free software licensed under the GNU General Public License, version 3.
You can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FORA PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which NmzIntegrate it has been used:

W. Bruns, B. Ichim, T. Römer and C. Söger: Normaliz. Algorithms for rational cones and
affine monoids. Available fromhttp://www.math.uos.de/normaliz.

You can add a reference to [2] in order to indicate that NmzIntegrate has been used.

9 History

9.1 1.0 → 1.1

1. NmzIntegrate can now be used on objects that do not have maximal dimension in their
surrounding space.

2. NmzIntegrate calls Normaliz if input files are missing.

3. The input syntax for polynomials has been improved: whitespace is neglected.

11

http://www.math.uos.de/normaliz


4. The efficiency has been improved significantly by using integral arithmetic internally
instead of rational arithmetic.

9.2 1.1 → 1.2

1. Use of the (now existing) CoCoALib function for input of polynomials and other small
changes reflecting the development of CoCoALib.

2. Extension to semiopen cones.

3. Name of file with suffixpnm can be specified independently of the name of the project.

Referen
es

[1] J. Abbott and A. Bigatti,CoCoALib. A GPL C++ library for doing Computations in
Commutative Algebra. Available fromhttp://cocoa.dima.unige.it/cocoalib/

[2] W. Bruns and C. Söger,Generalized Ehrhart series and integration in Normaliz. J.
Symb. Comp., to appear.http://arxiv.org/abs/1211.5178

[3] J. Jeffries, J. Montaño and M. Varbaro,Multiplicities of classical varieties.
http://arxiv.org/abs/1308.0582

12

http://cocoa.dima.unige.it/cocoalib/
http://arxiv.org/abs/1211.5178
http://arxiv.org/abs/1308.0582

	The objectives of NmzIntegrate
	Major changes in this version
	Input files
	Basic input files
	Auxiliary files produced by Normaliz
	The polynomial

	Running NmzIntegrate
	The output file
	A generalized Ehrhart series
	An integral

	Distribution and installation
	Compilation
	Copyright and how to cite
	History
	1.0  1.1
	1.1  1.2


