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1 Introduction

1.1 The objectives of Normaliz

The program Normaliz, version 2.7, is mainly a tool for computing the Hilbert basis of a
rational cone. The rational cone can be given by

(1) a system of generators G in a lattice Zn;
(2) constraints: a homogeneous linear system of equations and inequalities;
(3) generators and relations.

The Hilbert basis of a rational pointed cone C in Rn is defined with respect to a lattice L⊂ Zn:
it is the unique minimal system of generators of the monoid C∩L. The standard choice for L
is Zn itself, but for Normaliz this choice can be modified in two ways:

(1) L can be chosen to be the sublattice of Zn generated by G ;
(2) L can be chosen to be the lattice of solutions of a homogeneous system of congruences

if the cone is specified by equations and inequalities.

In particular, Normaliz solves combined systems of homogeneous diophantine linear equa-
tions, inequalities and congruences. (An extension to nonhomogeneous systems is envisaged.)
Conversely, Normaliz computes a system of constraints defining the cone and the lattice for
which the Hilbert basis has been computed.

Normaliz has special input types for lattice polytopes (represented by their vertices) and mono-
mial ideals (represented by the exponent vectors of their generators).

The data computed by Normaliz can be augmented if the monoid is homogeneous in a cer-
tain sense (see Section 3.6): if asked to do so, Normaliz computes the h-vector and Hilbert
polynomial of the monoid (or its associated algebra).

On the other hand, the data computed can also be restricted, for example to the support hyper-
planes of the cone or the lattice points of a lattice polytope.

For the mathematical background we refer the reader to [2] and [4]. The terminology follows
[2]. For algorithms of Normaliz see [5] and [6]. Some of the recent extensions from version
2.2 to ≥ 2.5 are discussed in [3].

The input syntax of Normaliz is always kept backward compatible so that input files for older
versions can still be used.

1.2 Access from other systems

We provide a SINGULAR library normaliz.lib and the package Normaliz.m2 for MACAU-
LAY2 that make Normaliz accessible from these systems. Thus SINGULAR or MACAULAY2
can be used as a comfortable environment for the work with Normaliz, and, moreover, Nor-

maliz can be applied directly to objects belonging to the classes of toric rings and monomial
ideals.

Normaliz has been made accessible from POLYMAKE (thanks to the POLYMAKE team).
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1.3 Major changes relative to version 2.5

(1) There is only one executable called normaliz. (However, the names norm64 and normbig

can still be used.)
(2) Several algorithms changed substantially. In particular, this applies to the h-vector com-

putation. The changes lead to an overall saving of time and especially of memory. The
changes are supported by some new options for large problems. The new h-vector algo-
rithm uses an idea of Köppe and Verdoolaege [7].

(3) Because of the change in the h-vector algorithm, Normaliz does not compute line shellings
anymore. Users who want to compute such shellings, can resort to version 2.5 (still
available on the web site).

(4) The dual mode can now be used with all input types.
(5) Internally, Normaliz is now separated in a front end and a kernel formed by a library.

At the moment the library is still under development and not ready for use in external
programs.

1.4 Future extensions

(1) Inhomogeneous systems of equations, inequalities and congruences,
(2) a programming interface,
(3) exploitation of symmetries,
(4) more general h-vector computation,
(5) access from further systems.

2 Getting started

Download

• the zip file with the Normaliz source, documentation, examples and further platform
independent components, and
• zip file made with the executable for your system

from the Normaliz website

http://www.math.uos.de/normaliz

and unzip both in the same directory of your choice. In it, a directory Normaliz2.7 (called
Normaliz directory in the following) is created with several subdirectories. (Some versions of
the Windows executables may need the installation of a runtime library; see website.)

In the Normaliz directory open jNormaliz by clicking jNormaliz.jar in the appropriate way.
(We assume that Java is installed on your machine.) In the jNormaliz file dialogue choose one
of the input files in the subdirectory example, say medium.in, and press Run. In the console
window you can watch Normaliz at work. Finally inspect the output window for the results.

4
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Figure 1: jNormaliz

The menus and dialogues of jNormaliz are self explanatory, but you can also consult the doc-
umentation [1] via the help menu.

If the executables prepared cannot be run on your system, then you can download the source
files and compile Normaliz yourself (see Section 10).

Moreover, one can, and often will, run Normaliz from the command line. This is explained in
Section 4.

If 64 bit integer precision is not sufficient, then one can swicth jNormaliz to infinite precision
(or use the option -B from the command line). Then Normaliz has no restrictions on the integer
precision. See Section 4.4. (The integer precision has nothing to do with the address width
(32 bit or 64 bit) of your operating system.)

3 The input �le

The input file <projectname>.in consists of one or several matrices (in version 2.5 and
higher). Each matrix is built as follows:

(1) The first line contains the number of rows m.
(2) The second contains the number of columns n.
(3) The next m lines of n integers each contain the rows.
(4) The last line contains a single integer or word specifying the type of input the matrix

presents.

At the moment there are three major types of input matrices, namely generators, constraints,
and relations.

For each input type we specify two lattices: the ambient lattice A in which the Hilbert basis
“lives” and the essential lattice E⊂ A which is generated by the Hilbert basis.

In this section we assume that Normaliz is run in a computation mode in which the Hilbert
basis is actually computed. (See Section 4 for computation modes.)
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3.1 Generators

The generator types are 0, 1, 2 and 3. If a matrix of one of these types is in the input file, then
it must be the only matrix in the file.

3.1.1 Type 0, integral_closure

The rows of an m×n matrix of type 0 represent m vectors in the ambient lattice A= Zn. The
essential lattice E is the smallest direct summand of Zn that contains the vectors in the matrix.

The vectors are considered as a system of generators G of a cone C, and Normaliz computes
the Hilbert basis of C with respect to E (or, equivalently, Zn).

The nomenclature integral_closure is explained by the fact that the Hilbert basis generates
the integral closure of the monoid Z+G in Zn.
A simple example:

Input Hilbert basis

3 1 0

2 0 1

2 0

1 1

0 2

integral_closure

In this example, the three input vectors clearly generate the positive orthant R2
+ in R2, and the

two unit vectors clearly are the Hilbert basis of R2
+∩Z2.

3.1.2 Type 1, normalization

The matrix is interpreted as in type 0, however E is chosen as the sublattice of Zn generated
by G .

The choice of the name normalization indicates that Normaliz computes the normalization of
the monoid Z+G . (The computation of such normalizations was the original goal of Normaliz,
hence the name.)
We choose the same input vectors as above, but change the type to normalization:

Input Hilbert basis

3 2 0

2 1 1

2 0 0 2

1 1

0 2

normalization

The cone has not changed, but the lattice has: E is now the sublattice of Z2 of all (z1,z2) with
z1 + z2 ≡ 0 mod 2.
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3.1.3 Type 2, polytope

The rows of the matrix are interpreted as integral points of a lattice polytope in Rn, which is
their convex hull.

The cone C is the cone over the polytope, i.e. the cone with apex 0 in Rn+1 generated by the
vectors (x,1) where x represents a row of the input matrix. We want to compute the Ehrhart
monoid C∩Zn+1.

The lattice A is Zn+1, and E is the smallest direct summand of A containing the generators of
C.

Type 2 is only a variant of type 0. One obtains the same results as in type 0 with the extended
vectors (x,1) as input. However, the text in the output file is adapted to the polytopal situation.
For an example, see Section 6.

3.1.4 Type 3, rees_algebra

In this type the input vectors are considered as exponent vectors of the generators of a mono-
mial ideal I in the polynomial ring K[X1, . . . ,Xn]. Normaliz computes the normalization of
the Rees algebra of the ideal I (see [4] for the notion of Rees algebra.) This is a monomial
subalgebra of the extended polynomial ring K[X1, . . . ,Xn,T ] with an auxiliary variable T . Nor-

maliz computes the exponent vectors in Zn+1 of the system of generators. For an example, see
Section 6.

In type 3 one has A= E= Zn+1.

3.1.5 Preparation of the generators

After the coordinate transformation to the lattice E, Normaliz divides each generator by the
greatest common divisor of its components. For example, the extreme rays listed will always
be such divided vectors (re-transformed to A).

3.2 Constraints

Inequalities, equations, and congruences defining the cone and the lattice are called con-
straints. Matrices representing them are of types 4, 5 and 6. All three types can be present in
the input file, and there can be several matrices of each type. The order does not matter. Ma-
trices of the same type will be concatenated. The numbers of columns must of course match:
for the ambient lattice Zn the matrices of types 4 and 5 must have n columns, and those of
type 6 must have n+1 columns.

If there is no matrix of type 4, then it is assumed that the user wants to compute the nonnegative
solutions of the system represented by the matrices of type 5 and/or 6. The input file is
therefore compatible with the types 4 and 5 of previous versions of Normaliz.
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3.2.1 Type 4, hyperplanes

A row (ξ1, . . . ,ξn) of the input matrix of type 4 represents an inequality

ξ1x1 + · · ·+ξnxn ≥ 0

for the vectors (x1, . . . ,xn) of Rn.
Example:

Input Hilbert basis

2 0 -1

2 1 1

1 0

1 -1

hyperplanes

Normaliz has computed the Hilbert basis of the cone defined by the inequalities x1 ≥ 0 and
x1− x2 ≥ 0 with respect to the lattice Z2.

3.2.2 Type 5, equations

A row (ξ1, . . . ,ξn) of the input matrix of type 5 represents an equation

ξ1x1 + · · ·+ξnxn = 0

for the vectors (x1, . . . ,xn) of Rn.
Example:

Input Hilbert basis

1 2 0 1

3 0 2 1

1 1 -2 1 1 1

equations

If the input file contains no further matrices, Normaliz has computed the Hilbert basis of the
subcone of R3

+ defined by the equation x1 + x1−2x3 = 0.

3.2.3 Type 6, congruences

We consider the rows of a matrix of type 6 to have length n+ 1. Each row (ξ1, . . . ,ξn,c)
represents a congruence

ξ1z1 + · · ·+ξnzn ≡ 0 mod c

for the elements (z1, . . . ,zn) ∈ Zn.
Example:

Input Hilbert basis

1 2 0

3 1 1
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1 1 2 0 2

congruences

If no other matrix is in the input file, then Normaliz computes the Hilbert basis of the positive
orthant intersected with the lattice of all integral vectors (z1,z2) such that z1 + z2 ≡ 0 mod 2
and the result is the same as in 3.1.2 above.

3.2.4 The constraints combined

Let L be the sublattice of Zn that consists of the solutions of the system of congruences defined
by the input matrix of type 6 (L = Zn if there is no matrix of type 6). Moreover let A be the
matrix of type 4 and B be the matrix of type 5. Then the cone C is given by

C = {x ∈ Rn : Ax≥ 0, Bx = 0}.

and the Hilbert basis of C∩L is computed.

The ambient lattice A is Zn, and the essential lattice is E= L∩RC.

If there is no matrix of type 5, then the system of equations is empty, satisfied by all vectors
of Rn.

Note that there is always a matrix of type 4, either explicitly in the input, or implicitly, namely
the n×n unit matrix, if there is no matrix of type 4 in the input file (but one of type 5 or 6).

See Section 6.2.3 for an example combining types 5 and 6.

3.3 Relations

Relations are another type of constraints. They do not select a sublattice of Zn or a subcone of
Rn, but define a monoid as a quotient of Zn

+ modulo a system of congruences (in the semigroup
sense!).

Let U be a subgroup of Zn. Then the natural image M of Zn
+ ⊂ Zn in the abelian group

G = Zn/U is a submonoid of G. In general, G is not torsionfree, and therefore M may not be
an affine monoid. However the image N of M in the lattice L = G/torsion is an affine monoid.
Normaliz chooses an embedding L ↪→ Zr, r = n− rankU , such that N becomes a submonoid
of Zr

+. In general there is no canonical choice for such an embedding, but one can always find
one, provided N has no invertible element except 0. The ambient lattice is then A = Zr, and
the essential lattice is L, realized as a sublattice of A.

The typical starting point is an ideal J ⊂ K[X1, . . . ,Xn] generated by binomials

Xa1
1 · · ·X

an
n −Xb1

1 · · ·X
bn
n .

The image of K[X1, . . . ,Xn] in the residue class ring of the Laurent polynomial ring S =
K[X±1

1 , . . . ,X±1
n ] modulo the ideal JS is exactly the monoid algebra K[M] of the monoid M

above if we let U be the subgroup of Zn generated by the differences

(a1, . . . ,an)− (b1, . . . ,bn).
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Ideals of type JS are called lattice ideals if they are prime. Since Normaliz automatically
passes to G/torsion, it replaces JS by the smallest lattice ideal containing it.

3.3.1 Type 10, lattice_ideal

The rows of the input matrix of type 10 are interpreted as generators of the subgroup U , and
Normaliz performs the computation as just explained.
As an example we consider the binomials X1X3−X2

2 , X1X4−X2X3:
Input Hilbert basis

2 3 0

4 2 1

1 -2 1 0 1 2

1 -1 -1 1 0 3

lattice_ideal

In this example Z4/U is torsionfree, but we can replace each of the vectors in the input matrix
by a nonzero integral multiple without changing the result.

Type 10 cannot be combined with any other input type—such a combination would not make
sense.

3.4 Pointedness

For Hilbert basis computations and triangulations Normaliz requires the cone to be pointed
(x,−x ∈C =⇒ x = 0). Whenever the condition of pointedness is violated at a step where it
is crucial, Normaliz will stop computations.

Pointedness is checked by testing whether the dual cone of C is full dimensional, and if not,
then the constructor of the dual cone complains as follows:

Full Cone error: Matrix with rank = number of columns needed in the

constructor of the object Full_Cone.

Probable reason: Cone not full dimensional(<=> dual cone not pointed)!

3.5 The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

3.6 Homogeneity

In certain cases Normaliz can compute the h-vector and the Hilbert polynomial of a graded
monoid. A grading of a monoid M is simply a homomorphism deg : M → Zg where Zg

contains the degrees. The Hilbert series of M with respect to the grading is the formal Laurent
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series
∑

d∈Zg
#{x ∈M : degx = d}T d1

1 · · ·T
dg

g ,

provided all sets {x ∈M : degx = d} are finite. At the moment, Normaliz can only handle the
case g = 1 if the monoid is homogeneous in the following sense: deg is a linear form on the
essential lattice E such that degx = 1 for all extreme integral generators in the Hilbert basis.
If such a linear form exists, it is uniquely determined, and Normaliz finds it.

Homogeneity is always satisfied for lattice polytopes. The Rees algebra is homogeneous in
our sense if and only if all the monomials generating the ideal have the same total degree.

Instead of degree we will use height in the following because of its geometric flavor.

Note that the notion of homogeneity used here is more general than previous versions of
Normaliz. Its use is compatible with that in [2], provided one refers to the monoid generated
by the extreme integral generators.

4 Running Normaliz

The syntax for calling Normaliz from the command line is

normaliz [-svnh1pVNHPdafcBe] [-x=<T>] [<projectname>]

where the options and <projectname> are optional. (We assume that the executable normaliz

or normaliz.exe is in the search path. Otherwise you have to prefix it with a suitable relative
or absolute path.) If no <projectname> is given, the program will ask you for it or display a
help screen.

The option -x differs from the other ones: <T> represents a positive number assigned to -x;
see Section 4.3.

The help screen can also be displayed by normaliz -?.

Normaliz will look for <projectname>.in as input file.

For example, if you input the command

normaliz -c -p -a rafa2416 or normaliz -cpa rafa2416

then the program will take the file rafa2416.in as input, control data will be displayed on
your terminal, the support hyperplanes, the triangulation, the multiplicity, the h-vector and the
Hilbert polynomial will be computed and all the possible output files will be produced.

If you have inadvertently typed rafa2416.in as the project name, then Normaliz will first look
for rafa2416.in.in as the input file. If this file doesn’t exist, rafa2416.in will be loaded.

In the following we explain the various options of Normaliz. The full text names given appear
in the help screen as well as in the menus of jNormaliz which allows you to choose options
interactively.
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The default computation mode is -n. All options that can be activated are switched off
by default.
Options are evaluated from left to right. Therefore the last of mutually exclusive options is
used.

4.1 Computation modes

4.1.1 Standard modes

The standard, ascending chain of computation modes is the following:

-s support hyperplanes: only the support hyperplanes of the cone under consideration
are computed.

-v volume triangulation: includes -s. In addition, Normaliz computes a triangulation
and the multiplicity in the homogeneous case. (For lattice polytopes this is the normal-
ized volume.)

-n Hilbert basis triangulation (previously normal): includes -v. Normaliz computes
the Hilbert basis.

-h Hilbert basis polynomial: includes -n. In the homogeneous case, Normaliz com-
putes the h-vector and the Hilbert polynomial. This computation mode yields the maxi-
mum information Normaliz can produce.

If only the h-vector is to be computed, then one uses

-p Hilbert polynomial

This mode is much faster than -n. It also computes the height 1 elements of the Hilbert basis.

Finally, for the application to lattice polytopes (but also for other homogeneous cases), the
computation of Hilbert bases can be restricted to the height 1 elements (without the h-vector):

-1 height 1 elements: the same as -n, but only height 1 elements are computed, using a
partial triangulation. See also -N below.

The last mode is again faster than -p.

4.1.2 Computation modes for large examples

In this section we describe the computation modes for large examples. They are invoked by
capital letters corresponding to the lower case letters above. The main difference is that the
triangulation is not saved, even if it has been completely calculated.

-V volume large Like -v.
-N Hilbert basis Like -n, however without computing the volume in the homogeneous

case. Like -1 it uses only a partial triangulation.
-H Hilbert basis polynomial large, like -h.
-P Hilbert polynomial large, like -p.
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Remarks: For some challenging examples it has proved extremely efficient to avoid the com-
putation of full triangulations. See [3] and Section 8.

The following input files in the example subdirectory should be processed with the “large”
options:

• A443.in, A543.in, A553.in, A643.in, semigraphoid5.in, lo6.in, bo5.in.

Some of these are extremely large for the modes -V, -H, -P, but they can all be computed.
See Section 8 for an indication of computation times.

4.1.3 The dual algorithm

It is often faster to use a Hilbert basis algorithm originally due to Pottier [8] that we call the
dual algorithm, in contrast to the primal (triangulation based) algorithm of Normaliz. (See [5]
for our version of the dual algorithm.) The dual algorithm is invoked by

-d dual

See Section 8 for a comparison of performance on various examples.

4.2 Control of output �les

In the default setting Normaliz writes only the output file <projectname>.out. The amount of
output files can be increased in two steps:

-f Normaliz writes the additional output files with suffixes gen, cst, inv and typ, provided
the data of these files have been computed.

-a Normaliz writes all available output files.

For the list of potential output files and their interpretation see Section 7.

4.3 Control of execution

The options that control the execution are:

-c activates the verbose (“control”) behavior of Normaliz in which Normaliz writes addi-
tional information about its current activities to the standard output.

-e activates the overflow error check of normaliz. Ignored if used with -B.
-B Switches normaliz to infinite precision.

-x=<T> There <T> stands for a positive integer limiting the number of threads that Normaliz is
allowed access on your system. The default value is set by the operating system. If you
want to run Normaliz in a strictly serial mode, choose <T>= 1.

The number of threads can also be controlled by the environment variable OMP_NUM_THREADS.
See Section 8 for further discussion.

The options -i and -m of version 2.2 have become obsolete. They will be ignored if present.
The option -S of version 2.5 is now equivalent to -s.
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4.4 Numerical limitations

Even in low dimensions, the range of 64 bit integers may not be sufficient for the computations
of Normaliz. Therefore normaliz can be switched to infinite precision by the option -B.

Computations with -B typically run about 5 times slower than those without it. In examples
that look critical, it may be useful first to try normaliz without -B, but with the error check
option activated. This costs time, too, but hardly more than 50% extra.

The user should run the example critical64.in in the subdirectory examples with normaliz

-e in order to see the failure of 64 bit arithmetic. (Running it with -B takes a while.)

Another way of checking normaliz by normaliz -B in the homogeneous case is to have
normaliz -h followed by normaliz -Bp and to compare h-vectors.

Note: The Hilbert polynomial is computed by normaliz without -B only if the rank is ≤ 21
since 20! is the largest factorial representable in 64 bit arithmetic.

5 The output �le

The data you will find in the output file depend on the input type and on the computation
mode. The output file starts with an “abstract” that collects various numerical and qualitative
data, for example the number of elements in the Hilbert basis. The lists of vectors, equations
etc. follow the abstract.

In types 6= 2,3 the output file <projectname>.out may contain the following data:

• only for type 10: the original system of generators (see below);
• the Hilbert basis H computed;
• the extreme rays of the cone C generated by H;
• the rank of the lattice E;
• the index of the lattice generated by the original input vectors in E;
• the support hyperplanes of C;
• a system of equations defining the vector space generated by C;
• a system of congruences defining E as a sublattice of A (together with the equations);

In the homogeneous case the following extra data may be printed:

• the linear form defining the degree;
• the height 1 elements of the Hilbert basis;
• the multiplicity;
• the h-vector and the coefficients of the Hilbert polynomial.

The (non)homogeneous case is indicated by the statement that the extreme rays are (not)
homogeneous. If the whole Hilbert basis is of height 1, this is indicated as well (despite
of the fact that it can be concluded from the numerical data). Moreover, Normaliz tells you
whether the original system of generators contains the Hilbert basis by indicating whether the
original monoid is integrally closed.
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Please note:

(1) The equations and support hyperplanes together define the cone C. While support
hyperplanes will be always present (except for the zero cone), equations will only be
printed if necessary, namely when dimC < rankA.
Similarly, congruences will only be printed if the lattice E is not given by RC∩A. This
can only happen with input matrices of type 1 or 6. The lattice E is defined simultane-
ously by the equations and the congruences.
Even if the cone and the lattice are defined by constraints, the inequalities, equations and
congruences will in general not be reproduced, but replaced by an equivalent system.

(2) The extreme rays are given by the first points in E on them (the extreme integral gener-
ators with respect to E).

(3) In order to lift the linear form defining the degree from E to A it may be necessary
to replace it by a multiple (in order to avoid fractions as coefficients). In this case the
evaluation of the linear form on the extreme rays will yield a degree > 1. The h-vector
and the Hilbert polynomial do always refer to the degree in E.

(4) Input matrices of types 0,1, 2 or 3 contain an explicit system of generators. For the
other types 6= 10 the extreme rays computed by Normaliz take their place. For type 10
Normaliz first computes the monoid M generated by the residue classes of the canoni-
cal basis of Zn (compare Section 3.3), and they are considered the original system of
generators.

If type = 2 (polytope), the following data may be found in the output file:

• the Hilbert basis of the Ehrhart monoid;
• the lattice points of the polytope;
• the dimension of the polytope;
• the extreme points;
• the support hyperplanes;
• a system of equations defining the affine hull of the polytope;
• the normalized volume;
• the h-vector and the coefficients of the Ehrhart polynomial.

In type = 3 (rees_algebra), the output file may contain the following:

• the generators of the integral closure R of the Rees algebra;
• the extreme rays;
• the generators of the integral closure of the ideal;
• the support hyperplanes;
• if the ideal is primary to the irrelevant maximal ideal, the multiplicity of the ideal (not

to be confused with the multiplicity of the monoid).

In the homogeneous case the following extra data may be printed:

• the linear form defining the degree;
• the height 1 elements of the Hilbert basis;
• the multiplicity (of the monoid);
• the h-vector and the coefficients of the Hilbert polynomial.
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6 Examples

6.1 Generators

6.1.1 Type 0, integral_closure

The file rproj2.in contains the following (here typeset in 2 columns):

16

7

1 0 0 0 0 0 0 1 0 1 0 1 0 1

0 1 0 0 0 0 0 1 0 0 1 0 1 1

0 0 1 0 0 0 0 1 0 0 0 1 1 1

0 0 0 1 0 0 0 0 1 1 0 0 1 1

0 0 0 0 1 0 0 0 1 0 1 1 0 1

0 0 0 0 0 1 0 0 1 0 0 1 1 1

1 1 1 0 0 0 1 0 0 1 1 1 0 1

1 1 0 1 0 0 1 0 0 1 1 0 1 1

0

This means that we wish to compute the Hilbert basis of the cone generated by the 16 vectors

(1,0,0,0,0,0,0) , (0,1,0,0,0,0,0) , . . . , (0,0,1,1,0,1,1)

in R7 with respect to the full lattice Z7, as indicated by the final digit that specifies the type.
(Actually, the vectors generate the full lattice so that a replacement of type 0 by type 1 would
not change anything.)

Running normaliz with option -h, Hilbert basis polynomial produces the file rproj2.out

which has the following content (partially typeset in 2 columns):

17 Hilbert basis elements

16 Hilbert basis elements of height 1

16 extreme rays

24 support hyperplanes

rank = 7 (maximal)

index = 1

original monoid is not integrally closed

extreme rays are of height 1 via the linear form:

1 1 1 1 1 1 -2

Hilbert basis elements are not of height 1

multiplicity = 72

h-vector:
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1 9 31 25 6 0 0

Hilbert polynomial:

1/1 97/30 71/15 49/12 13/6 41/60 1/10

***********************************************************************

17 Hilbert basis elements: 24 support hyperplanes:

0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 0 1 1 0 0 1 0 0 0 0

0 0 1 1 1 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 1 -1

0 1 0 0 1 1 1 0 1 0 0 1 1 -1

0 1 0 1 1 0 1 0 1 0 1 1 0 -1

0 1 1 0 0 1 1 0 0 1 1 0 1 -1

1 0 0 0 0 0 0 0 1 1 1 1 1 -2

1 0 0 0 1 1 1 0 0 1 1 1 0 -1

1 0 0 1 0 1 1 1 0 0 0 0 0 0

1 0 1 0 1 0 1 1 1 1 1 1 1 -3

1 1 0 1 0 0 1 1 0 0 0 1 1 -1

1 1 1 0 0 0 1 1 0 0 1 0 1 -1

1 1 1 1 1 1 2 1 0 1 0 1 0 -1

1 0 1 1 1 1 -2

16 extreme rays: 1 1 1 0 0 0 -1

1 0 0 0 0 0 0 1 1 1 1 0 1 -2

0 1 0 0 0 0 0 1 1 0 1 0 0 -1

0 0 1 0 0 0 0 1 1 1 0 1 1 -2

0 0 0 1 0 0 0 1 1 1 1 1 0 -2

0 0 0 0 1 0 0 1 1 0 1 1 1 -2

0 0 0 0 0 1 0

1 1 1 0 0 0 1 16 height 1 Hilbert basis elements:

1 1 0 1 0 0 1 0 0 0 0 0 1 0

1 0 1 0 1 0 1 0 0 0 0 1 0 0

1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1

1 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1

0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1

0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1

0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1

0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1

From this, we see that there are 17 elements in the Hilbert basis and 16 extreme rays, that
the sublattice generated by the input vectors has index 1 in Z7, and that the corresponding
support hyperplanes are given by the linear forms (0,0,0,1,0,0,0), (0,0,0,0,1,0,0), . . . ,
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(1,1,0,1,1,1,−2). We are also given the information that the monoid is homogeneous and
that its multiplicity is 72.

Since we are in the homogeneous case, the height 1 elements of the Hilbert basis, the h-vector
and Hilbert polynomial of the monoid generated by the Hilbert basis are also computed. The
h-vector is

(h0,h1, . . . ,h6) = (1,9,31,25,6,0,0) ,

and the Hilbert polynomial is given by

P(k) =
1
1
+

97
30

k+
71
15

k2 +
49
12

k3 +
13
6

k4 +
41
60

k5 +
1
10

k6 .

The Hilbert polynomial gives the number of elements of degree k, starting from degree 0, as
is always the case for normal monoids.

We omit an example of type 1 since it does not add anything new.

6.1.2 Type 2, polytope

The file polytop.in:
4

3

0 0 0

2 0 0

0 3 0

0 0 5

polytope

The Ehrhart monoid of the integral polytope with the 4 vertices

(0,0,0) , (2,0,0) , (0,3,0) and (0,0,5)

in R3 is to be computed. (Note the last line, indicating the polytope type 2.)

Running normaliz with option -h, Hilbert basis polynomial produces the file polytop.out:

19 generators of Ehrhart ring

18 lattice points in polytope

4 extreme points of polytope

4 support hyperplanes

polytope is not integrally closed

dimension of the polytope = 3

normalized volume = 30

h-vector:

1 14 15 0
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Ehrhart polynomial:

1/1 4/1 8/1 5/1

***********************************************************************

19 generators of Ehrhart ring: 18 lattice points in polytope:

0 0 0 1 0 0 0

0 0 1 1 0 0 1

0 0 2 1 0 0 2

0 0 3 1 0 0 3

0 0 4 1 0 0 4

0 0 5 1 0 0 5

0 1 0 1 0 1 0

0 1 1 1 0 1 1

0 1 2 1 0 1 2

0 1 3 1 0 1 3

0 2 0 1 0 2 0

0 2 1 1 0 2 1

0 3 0 1 0 3 0

1 0 0 1 1 0 0

1 0 1 1 1 0 1

1 0 2 1 1 0 2

1 1 0 1 1 1 0

2 0 0 1 2 0 0

1 2 4 2

4 extreme points of polytope: 4 support hyperplanes:

0 0 0 -15 -10 -6 >= -30

2 0 0 1 0 0 >= 0

0 3 0 0 1 0 >= 0

0 0 5 0 0 1 >= 0

The desired lattice points are the 18 ones listed above. To complete the picture, we also
provide all the generators of the Ehrhart monoid of the polytope. (There are 19 of them in this
example.) Furthermore, the original polytope is the solution of the system of the 4 inequalities

x3 ≥ 0 , x2 ≥ 0 , x1 ≥ 0 and 15x1 +10x2 +6x3 ≤ 30 ,

and has normalized volume 30.

The last two lines provide the information that the h-vector of the Ehrhart ring is

(h0,h1,h2,h3) = (1,14,15,0) ,

and its Ehrhart polynomial of the polytope is

P(k) = 1+4k+8k2 +5k3 .
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6.1.3 Type 3, rees_algebra

Next, let us discuss the example rees.in:
10

6 0 1 1 0 0 1

1 1 1 0 0 0 0 1 0 1 1 0

1 1 0 1 0 0 0 1 0 0 1 1

1 0 1 0 1 0 0 0 1 1 1 0

1 0 0 1 0 1 0 0 1 1 0 1

1 0 0 0 1 1 rees_algebra

Comparing with the data in rproj2.in shows that rees is the origin of rproj2.

Here we want to compute the integral closure of the Rees algebra of the ideal generated by
the monomials corresponding to the above 10 exponent vectors. The output in rees.out

coincides with that in rproj2.out, up to notions and the supplementary information on the
integral closure of the ideal:

10 generators of integral closure of the ideal:

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 1 1 1 0 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 1 0 1 0 0

1 0 0 0 1 1 1 1 1 0 0 0

A brief look at rproj2.out shows that exactly the generators with the last coordinate 1 have
been extracted. (So the ideal is integrally closed. This is not surprising because we have
chosen squarefree monomials.)

6.2 Constraints

6.2.1 Type 4, hyperplanes

The file dual.in is
24

7

0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 1 1 1 1 1 -3

0 0 0 0 0 1 0 1 0 0 1 0 1 -1

0 0 0 0 0 0 1 1 0 0 0 1 1 -1

0 0 1 0 0 0 0 1 0 1 0 1 0 -1

0 1 0 0 0 0 0 1 0 1 1 1 1 -2

0 1 0 1 1 0 -1 1 1 0 1 0 0 -1

0 1 0 0 1 1 -1 1 1 1 0 0 0 -1

0 1 1 0 0 1 -1 1 1 1 1 0 1 -2

0 0 1 1 1 0 -1 1 1 1 0 1 1 -2
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0 0 1 1 0 1 -1 1 1 1 1 1 0 -2

0 1 1 1 1 1 -2 1 1 0 1 1 1 -2

hyperplanes

This means that we wish to compute the Hilbert basis of the cone cut out from R7 by the
24 inequalities. (It is the dual of the cone spanned by the 24 linear forms in (R7)∗.) The
inequalities represent exactly the support hyperplanes from the file rproj2.out. The output
in dual.out coincides with that in rproj2.out.

6.2.2 Type 5, equations

Suppose that you have the following “square”

x1 x2 x3
x4 x5 x6
x7 x8 x9

and the problem is to find nonnegative values for x1, . . . ,x9 such that the 3 numbers in all rows,
all columns, and both diagonals sum to the same constant M (called the magic constant). This
leads to a linear system of equations

x1 + x2 + x3 = x4 + x5 + x6;
x1 + x2 + x3 = x7 + x8 + x9;
x1 + x2 + x3 = x1 + x4 + x7;
x1 + x2 + x3 = x2 + x5 + x8;
x1 + x2 + x3 = x3 + x6 + x9;
x1 + x2 + x3 = x1 + x5 + x9;
x1 + x2 + x3 = x3 + x5 + x7.

This system of equations is contained in the file 3x3magic.in. It ends with the input type 5.
The output file contains the following:

5 Hilbert basis elements

5 Hilbert basis elements of height 1

4 extreme rays

4 support hyperplanes

rank = 3

index = 2

original monoid is not integrally closed

extreme rays are of height 1 via the linear form:

0 0 0 0 1 0 0 0 0
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Hilbert basis elements are of height 1

multiplicity = 4

h-vector:

1 2 1

Hilbert polynomial:

1/1 2/1 2/1

***********************************************************************

5 Hilbert basis elements: 6 equations:

2 0 1 0 1 2 1 2 0 -2 1 4 -3 0 0 0 0 0

1 0 2 2 1 0 0 2 1 -1 0 1 -1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 -2 0 2 -1 0 1 0 0 0

1 2 0 0 1 2 2 0 1 -2 0 3 -2 0 0 1 0 0

0 2 1 2 1 0 1 0 2 0 0 -2 1 0 0 0 1 0

-1 0 2 -2 0 0 0 0 1

4 extreme rays:

1 2 0 0 1 2 2 0 1 5 height 1 Hilbert basis elements:

2 0 1 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0

0 2 1 2 1 0 1 0 2 1 0 2 2 1 0 0 2 1

1 0 2 2 1 0 0 2 1 1 1 1 1 1 1 1 1 1

1 2 0 0 1 2 2 0 1

4 support hyperplanes: 0 2 1 2 1 0 1 0 2

0 -1 0 0 2 0 0 0 0

0 1 2 0 -2 0 0 0 0

0 -1 -2 0 4 0 0 0 0

0 1 0 0 0 0 0 0 0

The 5 elements of the Hilbert basis represent the magic squares

2 0 1
0 1 2
1 2 0

1 0 2
2 1 0
0 2 1

1 1 1
1 1 1
1 1 1

1 2 0
0 1 2
2 0 1

0 2 1
2 1 0
1 0 2

All other solutions are linear combinations of these squares with nonnegative integer coeffi-
cients.

The next question one may rise is: Given a constant M , how many magic square are there
with magic constant M ? All generators have magic constant 3, so there are no magic squares
if M 6= 3k. If M = 3k, then the answer (in this particular case) is given by the Hilbert
polynomial

P(k) = 1+2k+2k2 .

Note that the nine inequalities xi ≥ 0 shrink to four support hyperplanes of the cone defined
by the inequalities and the equations.
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6.2.3 Type 6, congruences

We change our definition of magic square by requiring that the entries in the 4 corners are all
even. Then we have to augment the input file as follows (3x3magiceven.in):

7 4

9 10

1 1 1 -1 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 2

1 1 1 0 0 0 -1 -1 -1 0 0 1 0 0 0 0 0 0 2

0 1 1 -1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 2

1 0 1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 2

1 1 0 0 0 -1 0 0 -1 congruences

0 1 1 0 -1 0 0 0 -1

1 1 0 0 -1 0 -1 0 0

equations

The output changes accordingly:

9 Hilbert basis elements

4 extreme rays

4 support hyperplanes

rank = 3

index = 4

original monoid is not integrally closed

extreme rays are not of height 1

***********************************************************************

9 Hilbert basis elements: 4 support hyperplanes:

2 4 0 0 2 4 4 0 2 1 0 1 0 -1 0 0 0 0

0 4 2 4 2 0 2 0 4 -1 0 1 0 1 0 0 0 0

2 2 2 2 2 2 2 2 2 -1 0 -1 0 3 0 0 0 0

4 0 2 0 2 4 2 4 0 1 0 -1 0 1 0 0 0 0

2 0 4 4 2 0 0 4 2

2 5 2 3 3 3 4 1 4 6 equations:

4 3 2 1 3 5 4 3 2 -2 1 4 -3 0 0 0 0 0

2 3 4 5 3 1 2 3 4 -1 0 1 -1 1 0 0 0 0

4 1 4 3 3 3 2 5 2 -2 0 2 -1 0 1 0 0 0

-2 0 3 -2 0 0 1 0 0

4 extreme rays: 0 0 -2 1 0 0 0 1 0

4 0 2 0 2 4 2 4 0 -1 0 2 -2 0 0 0 0 1

2 4 0 0 2 4 4 0 2

0 4 2 4 2 0 2 0 4 2 congruences:

2 0 4 4 2 0 0 4 2 0 0 1 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 2
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As you can see, the equations make two of the input congruences superfluous: it is enough to
require the two corners in the first row to be even. The first congruence is to be read as x1 ≡ 0
mod 2, the second as x3 ≡ 0 mod 2.

6.3 Relations

6.3.1 Type 10, lattice_ideal

As an example, we consider the binomial ideal generated by

X2
1 X2−X4X5X6, X1X2

4 −X3X5X6, X1X2X3−X2
5 X6.

We want to find an embedding of the toric ring it defines.
The input ideal lattice_ideal.in is

3

6

2 1 0 -1 -1 -1

1 0 -1 2 -1 -1

1 1 1 0 -2 -1

lattice_ideal

It yields the output
6 original generators of the toric ring

9 Hilbert basis elements

9 Hilbert basis elements of height 1

5 extreme rays

5 support hyperplanes

rank = 3 (maximal)

index = 1

original monoid is not integrally closed

extreme rays are of height 1 via the linear form:

1 -1 1

Hilbert basis elements are of height 1

multiplicity = 10

h-vector:

1 6 3

Hilbert polynomial:

1/1 3/1 5/1
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***********************************************************************

6 original generators: 5 support hyperplanes:

0 1 2 1 0 0

3 2 0 0 1 0

0 0 1 0 0 1

1 1 1 6 -9 7

1 0 0 3 -2 1

1 3 3

9 height 1 Hilbert basis elements:

9 Hilbert basis elements: 1 0 0

1 0 0 0 0 1

0 0 1 2 1 0

2 1 0 1 1 1

1 1 1 0 1 2

0 1 2 3 2 0

3 2 0 2 2 1

2 2 1 1 2 2

1 2 2 1 3 3

1 3 3

5 extreme rays:

0 1 2

3 2 0

0 0 1

1 0 0

1 3 3

The 6 original generators correspond to the indeterminates X1, . . . ,X6 in the binomial equa-
tions. They represent an embedding of the affine monoid defined by the binomial equations.

7 Optional output �les

When one of the options -f or -a is activated, Normaliz writes additional output files whose
names are of type <projectname>.<type>. The format of the files (with the exception of
inv) is completely analogous to that of the input file, except that there is usually no last line
denoting the type. The main purpose of these files is to give the user easy access to the results
of the Normaliz run and to provide additional information not contained in the standard output
file.

The following files may be written, provided certain conditions are satisfied and the informa-
tion that should go into them is available (we denote the files simply by their types):

gen contains the Hilbert basis.
cst contains the constraints defining the cone and the lattice in the same format as they

would appear in the input: matrices of types 4,5,6 following each other. Each matrix
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is concluded by the integer denoting its type. Empty matrices are indicated by 0 as the
number of rows. Therefore there will always be 3 matrices.
Using this file as input for Normaliz will reproduce the Hilbert basis and all the other
data computed.

inv contains all the information from the file out that is not contained in any of the other
files.

typ This is the product of the matrices corresponding to egn and esp. In other words, the
linear forms representing the support hyperplanes of the cone C are evaluated on the
Hilbert basis. The resulting matrix, with the generators corresponding to the rows and
the support hyperplanes corresponding to the columns, is written to this file.
The suffix typ is motivated by the fact that the matrix in this file depends only on the
isomorphism type of monoid generated by the Hilbert basis (up to row and column
permutations). In the language of [2] it contains the standard embedding.

The 4 files above are produced with the option -f. If -a is activated, then the following files
are written additionally:

ext contains the extreme rays of the cone.
egn,esp These contain the Hilbert basis and support hyperplanes in the coordinates with re-

spect to a basis of E.
tgn, tri These files together describe the triangulation computed by Normaliz. (The com-

putation types -N and -d do not compute a triangulation.)
The file tgn contains a matrix of vectors (in the coordinates of A) spanning the simplicial
cones in the triangulation.
The file tri lists the simplicial subcones as follows: The first line contains the number
of simplicial cones in the triangulation, and the next line contains the number m+ 1
where m = rankE. Each of the following lines specifies a simplicial cone ∆: the first
m numbers are the indices (with respect to the order in the file tgn) of those generators
that span ∆, and the last entry is the multiplicity of ∆ in E, i. e. the absolute value of the
determinant of the matrix of the spanning vectors (as elements of E).
Note that these files are not generated with any of the modes -1,-N,-V,-P,-H.

ht1 contains the height 1 elements of the Hilbert basis in the homogeneous case.

The file 3x3magiceven.in has been processed with the option -a activated. We recommend
you to inspect all the output files in the subdirectory example of the distribution.

8 Performance and parallelization

The executables of Normaliz have been compiled for parallelization on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” time of the computations considerably,
even on relatively small systems. However, one should not underestimate the administrational
overhead involved.

• It is not a good idea to use parallelization for very small problems.
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• On multi-user systems with many processors it may be wise to limit the number of
threads for Normaliz somewhat below the maximum number of cores.

The number of parallel threads can be limited by the Normaliz option -x (see Section 4.3) or
by the commands

export OMP_NUM_THREADS=<T> (Linux/Mac)

or

set OMP_NUM_THREADS=<T> (Windows)

where <T> stands for the maximum number of threads accessible to Normaliz. We use

export OMP_NUM_THREADS=16

on a multi-user system system with 24 cores.

Limiting the number of threads to 1 forces a strictly serial execution of Normaliz.

First we compare the performance of Normaliz on several processor configurations.

mode i5 M520 i7 Xeon Xeon
cores/threads 2 cor, 4 thr 4 cor, 8 thr 1 cor, 1 thr 24 cor, 16 thr

medium -h 1.7 0.9 3.9 2.6
A443 -h 65 32 150 137
A443 -N 0.7 0.4 1.1 0.4
A543 -N 25 17.1 53 11
A543 -H 2900 1500 6385 1815
A553 -N 4580 2010 22140 2900

All computation times are based on the Linux version of normaliz.

Finally we compare the primal and the dual algorithm on several examples (computation times
measured on the Xeon system with 16 threads).

-n -d

dual 0.02 0.02
cut 0.2 0.6

small 3 68
rafad 38 ∞

4x4 0.02 0.02
5x5 9800 1
6x6 ∞ 12500

As a rule of thumb, one should use -d if the number of extreme rays is at least one magnitude
larger than that of support hyperplanes. Therefore a previous run with -s may help in choosing
the right approach. The example small is discussed extensively in [5].
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9 Distribution and Installation

In order to install Normaliz you should first download the basic package containing the docu-
mentation, examples, source code, jNormaliz and the packages for Singular and Macaulay 2.
Then unzip the downloaded file Normaliz2.7.zip in a directory of your choice. (Any other
downloaded zip file for Normaliz should be unzipped in this directory, too.)

This process will create a directory Normaliz2.7 (called Normaliz directory) and several sub-
directories in Normaliz2.7. The names of the subdirectories created are self-explanatory.
Nevertheless we give an overview:

• In the main directory Normaliz2.7 you should find jNormaliz.jar, Copying and sub-
directories.
• In the subdirectory source contains the source files and a Makefile for compilation

with GCC.
• Subdirectory doc contains the file you are reading and further documentation.
• In the subdirectory example are the input and output files for some examples It contains

all input files of examples of this documentation, except the toy examples of Section
3. Some very large output files are contained in an extra zip file accessible from the
Normaliz home page.
• The subdirectory singular contains the SINGULAR library normaliz.lib and a PDF

file with documentation.
• The subdirectory macaulay2 contains the MACAULAY2 package Normaliz.m2.
• The subdirectory lib contains libraries for jNormaliz.

We provide executables for Windows, Linux (each in a 32 bit and a 64 bit version) and Mac.
Download the archive file corresponding to your system Normaliz2.7<systemname>.zip and
unzip it. This process will store the the executable in the directory Normaliz2.7. In case you
want to run Normaliz from the command line or use it from other systems, you may have to
copy the executables to a directory in the search path for executables.

For backward compatibility, we provide shell scripts (batch files) norm64 and normbig. They
call normaliz with the parameters passed to them, augmented by -B in the case of normbig.

Please remove old versions of norm64 and normbig from your search path.

10 Compilation

10.1 GCC

Produce the executables by calling make in the subdirectory source. You may have to trans-
port the executables to a directory in your search path. jNormaliz expects them in its own
directory.
Note that normaliz needs GMP (including the C++ wrapper) and the Boost collection. There-
fore you must install them first.
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We are using OpenMP 3.0. Please make sure that your GCC version is compatible with it
(version ≥ 4.4).

Note the following exceptions:
1. One can compile Windows executables with the Cygwin port of GCC. Unfortunately it

is not compatible to OpenMP.

2. Mac versions of GCC older than 4.5 have a bug that makes it impossible to use OpenMP.

In any case, or if you want to avoid parallelization, you can call make OPENMP=no.

This is the commandline we use to compile Normaliz for Mac:

/path_to_g++4.5/g++ -O3 -I /path_to_boost/ -funroll-loops -fopenmp

-static-libgcc Normaliz-impl.cpp -lgmpxx -lgmp -o normaliz

10.2 Visual Studio project

The Windows executables provided by us have been compiled in Visual Studio with the Intel R©
C++ compiler. (The Visual C++ compiler can only be used without OpenMP.)

If you want to compile Normaliz yourself in this way, please unzip the corresponding zip file
on the Normaliz home page. This will create a subdirectory Visual Studio of the Normaliz

directory. This directory contains the predefined project. We have provided

1. two configurations: Release (with OpenMP) and ReleaseSerial (without OpenMP),
and

2. two platforms, Win32 and x64.

Instead of GMP we use the MPIR library for the Windows version of normaliz. For con-
venience, the MPIR files have been included in the distribution (in the subdirectory MPIR of
Visual Studio). Please

• copy the library files for Win32 into the lib subdirectory of the Visual C++ compiler,
• the library files for x64 to the subdirectory amd64 (or x64) of lib, and
• the two header files to the include subdirectory of the compiler.

Moreover, you must install the Boost collection available from http://www.boost.org/. We only
use Boost libraries that are entirely implemented in their headers. So the only preparation
beyond downloading and unzipping is to add the Boost root directory to the list of include
paths. In the Visual C++ IDE, click “Tools | Options... | Projects | VC++ directories”. Then,
in “Show Directories for”, select “Include files” and add the path to the Boost root directory.

After the compilation you must copy the executable to the directories where they are expected
(the Normaliz directory or a directory in the search path).

The source files for Visual Studio are identical to those for GCC.
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11 Changes relative to version 2.0

Changes in version 2.1:
User control, input and output:

1. The command line option -i forces Normaliz to ignore a potentially existing setup file. This is
useful if an external program wants to keep complete control (see Section 4). In case the setup
file does not exist, -i keeps Normaliz from issuing a warning message. (Obsolete)

2. In addition to the choice of the type via a single digit in the last line of the input file, the type
can now be specified by a keyword (see Section 3).

3. In the homogeneous case Normaliz also lists the “height 1” elements in the Hilbert basis (and
writes them to a file with suffix ht1 if requested); see Sections 5 and 6.

4. The structure of the file with suffix inv (used for the communication with computer algebra
systems) has been changed from a SINGULAR command to a neutral format.

Algorithms:

1. In types 4 and 5 in which the input is given as a system of homogeneous linear inequalities
or equations resp., it is often (but by no means always) better to use (a variant of) Pottier’s
algorithm. The user can choose this algorithm by the command line option -d representing
“dual” (see Section 8).

Access from computer algebra systems:

1. a package for MACAULAY2.

2. library for SINGULAR extended by functions for torus invariants and valuation rings.

Changes in version 2.2:
User control, input and output:

1. New command line option -e to activate test for arithmetic errors.

2. New command line option -m to save memory at the expense of computation time. This option
replaces “optimize for speed” in version 2.1.

3. New command line option -? to print a small help text.

4. Name of setup file changed from setup.txt to normaliz.cfg.

5. It is now possible to give the input file with the ending ".in" (but not recommended).

6. Option “Abort by user” removed. The program exits if an error is detected.

7. Renamed “Run mode” to “Computation type” for clearer distinction to the (run) mode.

8. Renamed “Testing number” to “Overflow Test Modulus”, “Lifting constant” to “Lifting bound”
and “Use control data” to “Verbose”.

9. File extension .hom changed to .ht1.

10. In type 2=polytope the vectors in the file .ext are given as extreme rays of the cone over the
polytope (vertices of the polytope in the previous version).

Changes in version 2.5:
User control, input and output:
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1. Introduction of jNormaliz.

2. Setup file abolished. Option -i therefore obsolete.

3. Option -m obsolete because of improved algorithm.

4. New input types 6 and 10. Moreover, combination of 4, 5 and 6 allowed.

5. Output file reorganized. Equations and congruences added.

6. File sup replaced by cst containing a full system of constraints.

7. File tri supplemented by file tgn (necessary since the reference to the input file is not always
possible).

Algorithms and implementation:

1. Several details improved. Memory usage reduced.

2. Shelling algorithm improved considerably.

3. Algorithms for large examples added.

4. Parallelization for shared memory systems.

5. norm32 abolished.

6. More general notion of homogeneity.

Access from computer algebra systems:

1. MACAULAY2 package restructured by Gesa Kämpf.

2. MACAULAY2 package and SINGULAR library adapted.

Changes in version 2.7:
User control, input and output:

1. Only one executable normaliz. Precision controlled by option -B.

2. Slight changes in the wording of the main output file.

3. Introduction of options for large problems.

Algorithms and implementation:

1. Separation of front end and kernel (implemented as a library).

2. Pyramid based algorithms for large problems (to be explained elsewhere).

3. New algorithm for h-vector. No computation of line shellings in this version.

4. Dual mode accessible from all input types.

5. General improvement of memory use (and speed) by more efficient data types.

12 Copyright

Normaliz 2.7 is free software licensed under the GNU General Public License, version 3. You
can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
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It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which it has been used:

W. Bruns, B. Ichim and C. Söger: Normaliz. Algorithms for rational cones and affine
monoids. Available from http://www.math.uos.de/normaliz.
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