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1. Introduction

1.1. The objectives of Normaliz

The program Normaliz is a tool for computing the Hilbert bases and enumerative data of ratio-
nal cones and, more generally, sets of lattice points in rational polyhedra. The mathematical
background and the terminology of this manual are explained in Appendix A. For a thorough
treatment of the mathematics involved we refer the reader to [5]. The terminology follows
[5]. For algorithms of Normaliz see [6], [8], [9] and [10]. Some new developments are briefly
explained in this manual.

Both polyhedra and lattices can be given by

(1) systems of generators and/or
(2) constraints.

Since version 3.1, cones need not be pointed and polyhedra need not have vertices, but are
allowed to contain a positive-dimensional affine subspace.

In addition to generators and constraints, affine monoids can be defined by lattice ideals, in
other words, by binomial equations.

In order to describe a rational polyhedron by generators, one specifies a finite set of vertices
x1, . . . ,xn ∈Qd and a set y1, . . . ,ym ∈ Zd generating a rational cone C. The polyhedron defined
by these generators is

P = conv(x1, . . . ,xn)+C, C = R+y1 + · · ·+R+ym.

An affine lattice defined by generators is a subset of Zd given as

L = w+L0, L0 = Zz1 + · · ·+Zzr, w,z1, . . . ,zr ∈ Zd.

Constraints defining a polyhedron are affine-linear inequalities with integral coefficients, and
the constraints for an affine lattice are affine-linear diophantine equations and congruences.
The conversion between generators and constraints is an important task of Normaliz.

The first main goal of Normaliz is to compute a system of generators for

P∩L.

The minimal system of generators of the monoid M =C∩L0 is the Hilbert basis Hilb(M) of
M. The homogeneous case, in which P = C and L = L0, is undoubtedly the most important
one, and in this case Hilb(M) is the system of generators to be computed. In the general case
the system of generators consists of Hilb(M) and finitely many points u1, . . . ,us ∈ P∩L such
that

P∩L =
s⋃

j=1

u j +M.

The second main goal are enumerative data that depend on a grading of the ambient lattice.
Normaliz computes the Hilbert series and the Hilbert quasipolynomial of the monoid or set
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of lattice points in a polyhedron. In combinatorial terminology: Normaliz computes Ehrhart
series and quasipolynomials of rational polyhedra. Normaliz also computes weighted Ehrhart
series and Lebesgue integrals of polynomials over rational polytopes.

Normaliz now has a variant called QNormaliz. Its basic number class are elements of a sub-
field of R instead of integers. This extends the scope of Normaliz to certain nonrational
polyhredra, but limits its applicability to convex hull computations and triangulations since
finite generation of the lattice points in such polyhedra is no longer given.

The computation goals of Normaliz can be set by the user. In particular, they can be restricted
to subtasks, such as the lattice points in a polytope or the leading coefficient of the Hilbert
(quasi)polynomial.

Performance data of Normaliz can be found in [9].

Acknowledgement. In 2013–2016 the development of Normaliz has been supported by the
DFG SPP 1489 “Algorithmische und experimentelle Methoden in Algebra, Geometrie und
Zahlentheorie”.

1.2. Platforms, implementation and access from other systems

Executables for Normaliz are provided for Mac OS, Linux and MS Windows. If the executa-
bles prepared cannot be run on your system, then you can compile Normaliz yourself (see
Section 10). The statically linked Linux binaries provided on our homepage can be run in the
Linux subsystem that is available in certain versions of MS Windows 10.

Normaliz is written in C++, and should be compilable on every system that has a GCC com-
patible compiler. It uses the standard packages Boost and GMP (see Section 10). The paral-
lelization is based on OpenMP.

The executables provided by us use the integer optimization program SCIP [2] for certain
subtasks, but the inclusion of SCIP must be activated at compile time.

Normaliz consists of two parts: the front end normaliz for input and output and the C++ library
libnormaliz that does the computations.

Normaliz can be accessed from the interactive general purpose system PYTHON via the inter-
face PYNORMALIZ written by Sebastian Gutsche and with contributions by Justin Shenk and
Richard Sieg.

Normaliz can also be accessed from the following systems:

• SINGULAR via the library normaliz.lib,
• MACAULAY 2 via the package Normaliz.m2,
• COCOA via an external library and libnormaliz,
• GAP via the GAP package NORMALIZINTERFACE [13] which uses libnormaliz,
• POLYMAKE (thanks to the POLYMAKE team),
• SAGEMATH via PyNormaliz (on preparation, thanks to Matthias Köppe).

The Singular and Macaulay 2 interfaces are contained in the Normaliz distribution. At present,
their functionality is limited to Normaliz 2.10. Nevertheless they can profit from the newer
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versions.

Furthermore, Normaliz is used by the B. Burton’s system REGINA and in SECDEC by S.
Borowka et al.

Normaliz does not have its own interactive shell. We recommend the access via PyNormaliz,
GAP for SageMath (in preparation) for interactive use.

1.3. Major changes relative to version 3.1.1

In 3.2.0;

(1) installation via autotools (written by Matthias Köppe),
(2) automatic choice of algorithmic variants (can be switched off),
(3) sparse format for vectors and matrices,
(4) constraints in symbolic form,
(5) Hilbert series with denominator corresponding to a homogeneous system of parameters,
(6) choice of an output directory,
(7) improvements of libnormaliz: extension of enumeration ConeProperty, constructors

based on Matrix<Integer>, additional functions for retrieval of results,
(8) a better implementation of Approximate and its use in the inhomogeneous case,
(9) option Symmetrize that produces symmetrized input for nmzIntegrate and runs nmzIn-

tegrate on this input,
(10) QNormaliz, a version of Normaliz using coordinates in an extension of Q (restricted to

convex hull computations and triangulation).

In 3.3.0:

(1) inclusion of NmzIntegrate in Normaliz as a part of libnormaliz,
(2) fractions in input files,
(3) controlled interruption of Normaliz.

See the file CHANGELOG in the basic package for more information on the history of Normaliz.

1.4. Future extensions

(1) Computation and exploitation od automorphism groups,
(2) multigraded Hilbert series,
(3) access from further systems,
(4) Gröbner and Graver bases.

1.5. Download and installation

Download

• the zip file with the Normaliz source, documentation, examples and further platform
independent components, and
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• the zip file containing the executable for your system

from the Normaliz website

http://normaliz.uos.de

and unzip both in the same directory of your choice. In it, a directory normaliz-3.3.0 (called
Normaliz directory in the following) is created with several subdirectories.

See Section 9 for more details on the distribution and consult Section 10 if you want to compile
Normaliz yourself.

2. Normaliz by examples

2.1. Terminology

For the precise interpretation of parts of the Normaliz output some terminology is necessary,
but this section can be skipped at first reading, and the user can come back to it when it
becomes necessary. We will give less formal descriptions along the way.

As pointed out in the introduction, Normaliz “computes” intersections P∩ L where P is a
rational polyhedron in Rd and L is an affine sublattice of Zd . It proceeds as follows:

(1) If the input is inhomogeneous, then it is homogenized by introducing a homogenizing
coordinate: the polyhedron P is replaced by the cone C(P): it is the closure of R+(P×
{1} in Rd+1. Similarly L is replaced by L̃ = Z(L×{1}). In the homogeneous case in
which P is a cone and L is a subgroup of Zd , we set C(P) = P and L̃ = L.

(2) The computations take place in the efficient lattice

E= L̃∩RC(P).

where RC(P) is the linear subspace generated by C(P). The internal coordinates are
chosen with respect to a basis of E. The efficient cone is

C= R+(C(P)∩E).

(3) Inhomogeneous computations are truncated using the dehomogenization (defined im-
plicitly or explicitly).

(4) The final step is the conversion to the original coordinates. Note that we must use the
coordinates of Rd+1 if homogenization has been necessary, simply because some output
vectors may be non-integral.

Normaliz computes inequalities, equations and congruences defining E and C. The output
contains only those constraints that are really needed. They must always be used jointly: the
equations and congruences define E, and the equations and inequalities define C. Altogether
they define the monoid M = C∩E. In the homogeneous case this is the monoid to be com-
puted. In the inhomogeneous case we must intersect M with the dehomogenizing hyperplane
to obtain P∩L.

10

http://normaliz.uos.de


In this section, only pointed cones (and polyhedra with vertices) will be discussed. Nonpointed
cones will be addressed in Section 6.8.

2.2. Practical preparations

You may find it comfortable to run Normaliz via the GUI jNormaliz [3]. In the Normaliz
directory open jNormaliz by clicking jNormaliz.jar in the appropriate way. (We assume that
Java is installed on your machine.) In the jNormaliz file dialogue choose one of the input files

Figure 1: jNormaliz

in the subdirectory example, say small.in, and press Run. In the console window you can
watch Normaliz at work. Finally inspect the output window for the results.

The menus and dialogues of jNormaliz are self explanatory, but you can also consult the
documentation [3] via the help menu.

Remark The jNormaliz drop down menus do presently not cover all options of Normaliz. But
since all computation goals and algorithmic variants can be set in the input file, there is no
real restriction in using jNormaliz. The only option not reachable by jNormaliz is the output
directory (see Section 5.5).

Moreover, one can, and often will, run Normaliz from the command line. This is fully ex-
plained in Section 5. At this point it is enough to call Normaliz by typing

normaliz -c <project>

where <project> denotes for the project to be computed. Normaliz will load the file project.in.
The option -c makes Normaliz to write a progress report on the terminal. Normaliz writes its
results to <project>.out.

Note that you may have to prefix normaliz by a path name, and <project> must contain a
path to the input file if it is not in the current directory. Suppose the Normaliz directory is the
current directory and we are using a Linux or Mac system. Then
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./normaliz -c example/small

will run small.in from the directory example. On Windows we must change this to

.\normaliz -c example\small

The commands given above will run Normaliz with the full parallelization that your system
can deliver. For the very small examples in this tutorial you may want to add -x=1 to suppress
parallelization.

As long as you don’t specify a computation goal on the command line or in the input file,
Normaliz will use the default computation goals:

HilbertBasis

HilbertSeries

ClassGroup

The computation of the Hilbert series requires the explicit or implicit definition of a grading.
Normaliz does only complain that a computation goal cannot be reached if the goal has been
set explicitly. For example, if you say HilbertSeries and there is no grading, an exception
will be thrown and Normaliz terminates, but an output file with the already computed data will
be written.

Normaliz will always print the results that are obtained on the way to the computation goals
and do not require extra effort.

Appendix B helps you to read the console output that you have demanded by the option -c.

2.3. A cone in dimension 2

We want to investigate the cone C = R+(2,1)+R+(1,3)⊂ R2:

0

This cone is defined in the input file 2cone.in:

amb_space 2

cone 2

1 3

2 1
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The input tells Normaliz that the ambient space is R2, and then a cone with 2 generators is
defined, namely the cone C from above.

The figure indicates the Hilbert basis, and this is our first computation goal.

If you prefer to consider the columns of a matrix as input vectors (or have got a matrix in this
format from another system) you can use the input

amb_space 2

cone transpose 2

1 2

3 1

Note that the number 2 following transpose is now the number of columns. Later on we will
also show the use of formatted matrices.

2.3.1. The Hilbert basis

In order to compute the Hilbert basis, we run Normaliz from jNormaliz or by

./normaliz -c example/2cone

and inspect the output file:

4 Hilbert basis elements

2 extreme rays

2 support hyperplanes

Self explanatory so far.

embedding dimension = 2

rank = 2 (maximal)

external index = 1

internal index = 5

original monoid is not integrally closed

The embedding dimension is the dimension of the space in which the computation is done.
The rank is the rank of the lattice E (notation as in Section 2.1). In fact, in our example E=Z2,
and therefore has rank 2.

For subgroups G⊂U ⊂ Zd we denote the order of the torsion subgroup of U/G by the index
of G in U . The external index is the index of the lattice E in Zd . In our case E = Zd , and
therefore the external index is 1. Note: the external index is 1 exactly when E is a direct
summand of Zd .

For this example and many others the original monoid is well defined: the generators of the
cone used as input are contained in E. (This need not be the case if E is a proper sublattice of
Zd , and we let the original monoid undefined in inhomogeneous computations.) Let G be the
subgroup generated by the original monoid. The internal index is the index of G in E.

The original monoid is integrally closed if and only if the it contains the Hilbert basis, and this
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is evidently false for our example. We go on.

size of triangulation = 1

resulting sum of |det|s = 5

The primal algorithm of Normaliz relies on a (partial) triangulation. In our case the triangula-
tion consists of a single simplicial cone, and (the absolute value of) its determinant is 5.

No implicit grading found

If you do not define a grading explicitly, Normaliz tries to find one itself: It is defined if and
only if there is a linear form γ on E under which all extreme rays of the efficient cone C have
value 1, and if so, γ is the implicit grading. Such does not exist in our case.

The last information before we come to the vector lists:
rank of class group = 0

finite cyclic summands:

5: 1

The class group of the monoid M has rank 0, in other words, it is finite. It has one finite cyclic
summand of order 5.

This is the first instance of a multiset of integers displayed as a sequence of pairs

<n>: <m>

Such an entry says: the multiset contains the number <n> with multiplicity <m>.

Now we look at the vector lists (typeset in two columns to save space):

4 Hilbert basis elements: 2 extreme rays:

1 1 1 3

1 2 2 1

1 3

2 1 2 support hyperplanes:

-1 2

3 -1

The support hyperplanes are given by the linear forms (or inner normal vectors):

−x1 +2x2 ≥ 0,
3x1− x2 ≥ 0.

If the order is not fixed for some reason, Normaliz sorts vector lists as follows : (1) by degree
if a grading exists and the application makes sense, (2) lexicographically.

2.3.2. The cone by inequalities

Instead by generators, we can define the cone by the inequalities just computed (2cone_ineq.in).
We use this example to show the input of a formamtted matrix:
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amb_space auto

inequalities

[[-1 2] [3 -1]]

A matrix of input type inequalities contains homogeneous inequalities. Normaliz can deter-
mine the dimension of the ambient space from the formatted matrix. Therefore we can declare
the ambient space as being “auto determined” (but amb_space 2 is not forbidden).

We get the same result as with 2cone.in except that the data depending on the original monoid
cannot be computed: the internal index and the information on the original monoid are missing
since there is no original monoid.

2.3.3. The interior

Now we want to compute the lattice points in the interior of our cone. If the cone C is given
by the inequalities λi(x) ≥ 0 (within aff(C)), then the interior is given by the inequalities
λi(x)> 0. Since we are interested in lattice points, we work with the inequalities λi(x)≥ 1.

The input file 2cone_int.in says

amb_space 2

strict_inequalities 2

-1 2

3 -1

The strict inequalities encode the conditions

−x1 +2x2 ≥ 1,
3x1− x2 ≥ 1.

This is our first example of inhomogeneous input.

0

Alternatively we could use the following two equivalent input files, in a more intuitive nota-
tion:

amb_space 2

constraints 2
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-1 2 > 0

3 -1 > 0

amb_space 2

constraints 2

-1 2 >= 1

3 -1 >= 1

There is an even more intuitive way to type the input file using symbolic constraints that we
will introduce in Section 2.6.1.

Normaliz homogenizes inhomogeneous computations by introducing an auxiliary homogeniz-
ing coordinate xd+1. The polyhedron is obtained by intersecting the homogenized cone with
the hyperplane xd+1 = 1. The recession cone is the intersection with the hyperplane xd+1 = 0.
The recession monoid is the monoid of lattice points in the recession cone, and the set of lattice
points in the polyhedron is represented by its system of module generators over the recession
monoid.

Note that the homogenizing coordinate serves as the denominator for rational vectors. In our
example the recession cone is our old friend that we have already computed, and therefore we
need not comment on it.

2 module generators

4 Hilbert basis elements of recession monoid

1 vertices of polyhedron

2 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2

The only surprise may be the embedding dimension: Normaliz always takes the dimension
of the space in which the computation is done. It is the number of components of the output
vectors. Because of the homogenization it has increased by 1.

size of triangulation = 1

resulting sum of |det|s = 25

In this case the homogenized cone has stayed simplicial, but the determinant has changed.

dehomogenization:

0 0 1

The dehomogenization is the linear form δ on the homogenized space that defines the hyper-
planes from which we get the polyhedron and the recession cone by the equations δ (x) = 1
and δ (x) = 0, respectively. It is listed since one can also work with a user defined dehomoge-
nization.
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module rank = 1

This is the rank of the module of lattice points in the polyhedron over the recession monoid.
In our case the module is an ideal, and so the rank is 1.

The output of inhomogeneous computations is always given in homogenized form. The last
coordinate is the value of the dehomogenization on the listed vectors, 1 on the module gener-
ators, 0 on the vectors in the recession monoid:

2 module generators: 4 Hilbert basis elements of recession monoid:

1 1 1 1 1 0

1 2 1 1 2 0

1 3 0

2 1 0

The module generators are (1,1) and (1,2).

1 vertices of polyhedron:

3 4 5

Indeed, the polyhedron has a single vertex, namely (3/5,4/5).

2 extreme rays of recession cone: 3 support hyperplanes of polyhedron (homogenized):

1 3 0 -1 2 -1

2 1 0 0 0 1

3 -1 -1

Two support hyperplanes are exactly those that we have used to define the polyhedron – and
it has only 2. But Normaliz always outputs the support hyperplanes that are needed for the
cone that one obtains by homogenizing the polyhedron, as indicated by ‘homolgenized”. The
homogenizing variable is always ≥ 0. In this case the support hyperplane (0,0,1) is essential
for the description of the cone. Note that it need not always appear.

2.4. A lattice polytope

The file polytope.in contains

amb_space 4

polytope 4

0 0 0

2 0 0

0 3 0

0 0 5

This is a good place to mention that Normaliz also accepts matrices (and vectors) in sparde
format:
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amb_space 4

polytope 4

;

1:2;

2:3;

3:5;

Each input row, concluded by ;, lists the indices and the corresponding nonzero values in that
row of the matrix.

The Ehrhart monoid of the integral polytope with the 4 vertices

(0,0,0) , (2,0,0) , (0,3,0) and (0,0,5)

in R3 is to be computed. The generators of the Ehrhart monoid are obtained by attaching a
further coordinate 1 to the vertices, and this explains amb_space 4. In fact, the input type
polytope is nothing but a convenient (perhaps superfluous) version of

amb_space 4

cone 4

0 0 0 1

2 0 0 1

0 3 0 1

0 0 5 1

Running normaliz produces the file polytope.out:

19 Hilbert basis elements

18 Hilbert basis elements of degree 1

4 extreme rays

4 support hyperplanes

embedding dimension = 4

rank = 4 (maximal)

external index = 1

internal index = 30

original monoid is not integrally closed

Perhaps a surprise: the lattice points of the polytope do not yield all Hilbert basis elements.

size of triangulation = 1

resulting sum of |det|s = 30

Nothing really new so far. But now Normaliz finds a grading given by the last coordinate. See
3.10 below for general information on gradings.

grading:

0 0 0 1
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degrees of extreme rays:

1: 4

Again we encounter the notation <n>: <m>: we have 4 extreme rays, all of degree 1.

Hilbert basis elements are not of degree 1

Perhaps a surprise: the polytope is not integrally closed as defined in [5]. Now we see the
enumerative data defined by the grading:

multiplicity = 30

Hilbert series:

1 14 15

denominator with 4 factors:

1: 4

degree of Hilbert Series as rational function = -2

Hilbert polynomial:

1 4 8 5

with common denominator = 1

The polytope has Z3-normalized volume 30 as indicated by the multiplicity. The Hilbert
(or Ehrhart) function counts the lattice points in kP, k ∈ Z+. The corresponding generating
function is a rational function H(t). For our polytope it is

1+14t +15t2

(1− t)4 .

The denominator is given in multiset notation: 1: 4 say that the factor (1− t1) occurs with
multiplicity 4.

The Ehrhart polynomial (again we use a more general term in the output file) of the polytope
is

p(k) = 1+4k+8k2 +5k3 .

In our case it has integral coefficients, a rare exception. Therefore one usually needs a denom-
inator.

Everything that follows has already been explained.

rank of class group = 0

finite cyclic summands:

30: 1

***********************************************************************

18 Hilbert basis elements of degree 1:
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0 0 0 1

...

2 0 0 1

1 further Hilbert basis elements of higher degree:

1 2 4 2

4 extreme rays: 4 support hyperplanes:

0 0 0 1 -15 -10 -6 30

0 0 5 1 0 0 1 0

0 3 0 1 0 1 0 0

2 0 0 1 1 0 0 0

The support hyperplanes give us a description of the polytope by inequalities: it is the solution
of the system of the 4 inequalities

x3 ≥ 0 , x2 ≥ 0 , x1 ≥ 0 and 15x1 +10x2 +6x3 ≤ 30 .

2.4.1. Only the lattice points

Suppose we want to compute only the lattice points in our polytope. In the language of
graded monoids these are the degree 1 elements, and so we add Deg1Elements to our input file
(polytope_deg1.in):

amb_space 4

polytope 4

0 0 0

2 0 0

0 3 0

0 0 5

Deg1Elements

/* This is our first explicit computation goal*/

We have used this opportunity to include a comment in the input file.

We lose all information on the Hilbert series, and from the Hilbert basis we only retain the
degree 1 elements.

2.5. A rational polytope

The type polytope can (now) be used for rational polytopes as well.
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We want to investigate the Ehrhart series of the triangle P with vertices

(1/2,1/2), (−1/3,−1/3), (1/4,−1/2).

For this example the procedure above yields the input file rational.in:

amb_space 3

polytope 3

1/2 1/2

-1/3 -1/3

1/4 -1/2

HilbertSeries

This is the first time that we used the shortcut unit_vector <n> which represents the nth unit
vector en ∈ Rd and is only allowed for input types which require a single vector.

From the output file we only list the data of the Ehrhart series.

multiplicity = 5/8

Hilbert series:

1 0 0 3 2 -1 2 2 1 1 1 1 2

denominator with 3 factors:

1: 1 2: 1 12: 1

degree of Hilbert Series as rational function = -3

Hilbert series with cyclotomic denominator:

-1 -1 -1 -3 -4 -3 -2

cyclotomic denominator:

1: 3 2: 2 3: 1 4: 1

Hilbert quasi-polynomial of period 12:

0: 48 28 15 7: 23 22 15

1: 11 22 15 8: 16 28 15

2: -20 28 15 9: 27 22 15

3: 39 22 15 10: -4 28 15

4: 32 28 15 11: 7 22 15

5: -5 22 15 with common denominator = 48

6: 12 28 15
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The multiplicity is a rational number. Since in dimension 2 the normalized area (of full-
dimensional polytopes) is twice the Euclidean area, we see that P has Euclidean area 5/16.

Unlike in the case of a lattice polytope, there is no canonical choice of the denominator of the
Ehrhart series. Normaliz gives it in 2 forms. In the first form the numerator polynomial is

1+3t3 +2t4− t5 +2t6 +2t7 + t8 + t9 + t10 + t11 +2t12

and the denominator is
(1− t)(1− t2)(1− t12).

As a rational function, H(t) has degree −3. This implies that 3P is the smallest integral
multiple of P that contains a lattice point in its interior.

Normaliz gives also a representation as a quotient of coprime polynomials with the denomi-
nator factored into cyclotomic polynomials. In this case we have

H(t) =−1+ t + t2 + t3 +4t4 +3t5 +2t6

ζ 3
1 ζ 2

2 ζ3ζ4

where ζi is the i-th cyclotomic polynomial (ζ1 = t−1, ζ2 = t +1, ζ3 = t2+ t +1, ζ4 = t2+1).

Normaliz transforms the representation with cyclotomic denominator into one with denomi-
nator of type (1− te1) · · ·(1− ter), r = rank, by choosing er as the least common multiple of
all the orders of the cyclotomic polynomials appearing, er−1 as the lcm of those orders that
have multiplicity ≥ 2 etc.

There are other ways to form a suitable denominator with 3 factors 1− te, for example g(t) =
(1− t2)(1− t3)(1− t4) = −ζ 3

1 ζ 2
2 ζ3ζ4. Of course, g(t) is the optimal choice in this case.

However, P is a simplex, and in general such optimal choice may not exist. We will explain
the reason for our standardization below.

Let p(k) be the number of lattice points in kP. Then p(k) is a quasipolynomial:

p(k) = p0(k)+ p1(k)k+ · · ·+ pr−1(k)kr−1,

where the coefficients depend on k, but only to the extent that they are periodic of a certain
period π ∈ N. In our case π = 12 (the lcm of the orders of the cyclotomic polynomials).

The table giving the quasipolynomial is to be read as follows: The first column denotes the
residue class j modulo the period and the corresponding line lists the coefficients pi( j) in
ascending order of i, multiplied by the common denominator. So

p(k) = 1+
7
12

k+
5

16
k2, k ≡ 0 (12),

etc. The leading coefficient is the same for all residue classes and equals the Euclidean volume.

Our choice of denominator for the Hilbert series is motivated by the following fact: ei is the
common period of the coefficients pr−i, . . . , pr−1. The user should prove this fact or at least
verify it by several examples.
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Especially in the case of a simplex the representation of the Hilbert series shown so far may
not be the expected one. In fact, there is a representation in which the exponents of t in the
denominator are the degrees of the integral extreme generators. So one would expect the
denominator to be (1− t2)(1− t3)(1− t4) in our case. The generalization to the nonsimplicial
case uses the degrees of a homogeneous system of parameters (see [5, p. 200]). Normaliz can
compute such a denominator if the computation goal HSOP is set (rationalHSOP.in):

Hilbert series (HSOP):

1 1 1 3 4 3 2

denominator with 3 factors:

2: 1 3: 1 4: 1

Note that the degrees of the elements in a homogeneous system of parameters are by no means
unique and that there is no optimal choice in general. To find a suitable sequence of degrees
Normaliz must compute the face lattice of the cone to some extent. Therefore be careful not
to ask for HSOP if the cone has many support hyperplanes.

Warning: It is tempting, but not a good idea to define the polytope by the input type vertices.
It would make Normaliz compute the lattice points in the polytope, but not in the cone over
the polytope, and we need these to determine the Ehrhart series.

2.5.1. The rational polytope by inequalities

We extract the support hyperplanes of our polytope from the output file and use them as input
(poly_ineq.in):

amb_space 3

inequalities 3

-8 2 3

1 -1 0

2 7 3

grading

unit_vector 3

HilbertSeries

At this point we have to help Normaliz because it has no way to guess that we want to inves-
tigate the polytope defined by the inequalities and the choice x3 = 1. This is achieved by the
specification of the grading that maps every vector to its tthird coordinate.

These data tell us that the polytope, as a subset of R2, is defined by the inequalities

−8x1 +2x2 +3≥ 0,
x1− x2 +0≥ 0,

2x1 +7x2 +3≥ 0.

These inequalities are inhomogeneous, but we are using the homogeneous input type inequalities
which amounts to introducing the grading variable x3 as explained above..
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Why don’t we define it by the “natural” inhomogeneous inequalities using inhom_inequalities?
We could do it, but then only the polytope itself would be the object of computation, and we
would have no access to the Ehrhart series. We could just compute the lattice points in the
polytope. (Try it.)

The inequalities as written above look somewhat artificial. It is certainly more natural to write
them in the form

8x1−2x2 ≤ 3,
x1− x2 ≥ 0,

2x1 +7x2 ≥−3.

and for the direct transformation into Normaliz input we have introduced the type constraints.
But Normaliz would then interpret the input as inhomogeneous and we run into the same prob-
lem as with inhom_inequalities. The way out: we tell Normaliz that we want a homoge-
neous computation (poly_hom_const.in):

amb_space 3

hom_constraints 3

8 -2 <= 3

1 -1 >= 0

2 7 >= -3

grading

unit_vector 3

HilbertSeries

2.6. Magic squares

Suppose that you are interested in the following type of “square”

x1 x2 x3
x4 x5 x6
x7 x8 x9

and the problem is to find nonnegative values for x1, . . . ,x9 such that the 3 numbers in all rows,
all columns, and both diagonals sum to the same constant M . Sometimes such squares are
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called magic and M is the magic constant. This leads to a linear system of equations

x1 + x2 + x3 = x4 + x5 + x6;
x1 + x2 + x3 = x7 + x8 + x9;
x1 + x2 + x3 = x1 + x4 + x7;
x1 + x2 + x3 = x2 + x5 + x8;
x1 + x2 + x3 = x3 + x6 + x9;
x1 + x2 + x3 = x1 + x5 + x9;
x1 + x2 + x3 = x3 + x5 + x7.

This system is encoded in the file 3x3magic.in:

amb_space 9

equations 7

1 1 1 -1 -1 -1 0 0 0

1 1 1 0 0 0 -1 -1 -1

0 1 1 -1 0 0 -1 0 0

1 0 1 0 -1 0 0 -1 0

1 1 0 0 0 -1 0 0 -1

0 1 1 0 -1 0 0 0 -1

1 1 0 0 -1 0 -1 0 0

grading

sparse 1:1 2:1 3:1;

The input type equations represents homogeneous equations. The first equation reads

x1 + x2 + x3− x4− x5− x6 = 0,

and the other equations are to be interpreted analogously. The magic constant is a natural
choice for the grading. It is given in sparse form, equivalent to the dense form

grading

1 1 1 0 0 0 0 0 0

It seems that we have forgotten to define the cone. This may indeed be the case, but doesn’t
matter: if there is no input type that defines a cone, Normaliz chooses the positive orthant, and
this is exactly what we want in this case.

The output file contains the following:

5 Hilbert basis elements

5 Hilbert basis elements of degree 1

4 extreme rays

4 support hyperplanes

embedding dimension = 9
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rank = 3

external index = 1

size of triangulation = 2

resulting sum of |det|s = 4

grading:

1 1 1 0 0 0 0 0 0

with denominator = 3

The input degree is the magic constant. However, as the denominator 3 shows, the magic
constant is always divisible by 3, and therefore the effective degree is M /3. This degree is
used for the multiplicity and the Hilbert series.

degrees of extreme rays:

1: 4

Hilbert basis elements are of degree 1

This was not to be expected (and is no longer true for 4×4 squares).

multiplicity = 4

Hilbert series:

1 2 1

denominator with 3 factors:

1: 3

degree of Hilbert Series as rational function = -1

Hilbert polynomial:

1 2 2

with common denominator = 1

The Hilbert series is
1+2t + t2

(1− t)3 .

The Hilbert polynomial is
P(k) = 1+2k+2k2,

and after substituting M /3 for k we obtain the number of magic squares of magic constant
M , provided 3 divides M . (If 3 - M , there is no magic square of magic constant M .)

rank of class group = 1

finite cyclic summands:

2: 2

So the class group is Z⊕ (Z/2Z)2.
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5 Hilbert basis elements of degree 1:

0 2 1 2 1 0 1 0 2

1 0 2 2 1 0 0 2 1

1 1 1 1 1 1 1 1 1

1 2 0 0 1 2 2 0 1

2 0 1 0 1 2 1 2 0

0 further Hilbert basis elements of higher degree:

The 5 elements of the Hilbert basis represent the magic squares

2 0 1
0 1 2
1 2 0

1 0 2
2 1 0
0 2 1

1 1 1
1 1 1
1 1 1

1 2 0
0 1 2
2 0 1

0 2 1
2 1 0
1 0 2

All other solutions are linear combinations of these squares with nonnegative integer coeffi-
cients. One of these 5 squares is clearly in the interior:

4 extreme rays: 4 support hyperplanes:

0 2 1 2 1 0 1 0 2 -2 -1 0 0 4 0 0 0 0

1 0 2 2 1 0 0 2 1 0 -1 0 0 2 0 0 0 0

1 2 0 0 1 2 2 0 1 0 1 0 0 0 0 0 0 0

2 0 1 0 1 2 1 2 0 2 1 0 0 -2 0 0 0 0

These 4 support hyperplanes cut out the cone generated by the magic squares from the linear
subspace they generate. Only one is reproduced as a sign inequality. This is due to the fact that
the linear subspace has submaximal dimension and there is no unique lifting of linear forms
to the full space.

6 equations: 3 basis elements of lattice:

1 0 0 0 0 1 -2 -1 1 1 0 -1 -2 0 2 1 0 -1

0 1 0 0 0 1 -2 0 0 0 1 -1 -1 0 1 1 -1 0

0 0 1 0 0 1 -1 -1 0 0 0 3 4 1 -2 -1 2 2

0 0 0 1 0 -1 2 0 -2

0 0 0 0 1 -1 1 0 -1

0 0 0 0 0 3 -4 -1 2

So one of our equations has turned out to be superfluous (why?). Note that also the equations
are not reproduced exactly. Finally, Normaliz lists a basis of the efficient lattice E generated
by the magic squares.

2.6.1. With even corners

We change our definition of magic square by requiring that the entries in the 4 corners are all
even. Then we have to augment the input file by the following (3x3magiceven.in):
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congruences 4 sparse

1:1 10:2;

3:1 10:2;

7:1 10:2;

9:1 10:2;

This sparse form is equivalent to the dense form

congruences 4

1 0 0 0 0 0 0 0 0 2

0 0 1 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 2

0 0 0 0 0 0 0 0 1 2

The first 9 entries in each row represent the coefficients of the coordinates in the homogeneous
congruences, and the last is the modulus:

x1 ≡ 0 mod 2

is the first congruence etc.

We could also define these congruences as symbolic constraints:

constraints 4 symbolic

x[1] ~ 0(2);

x[3] ~ 0(2);

x[7] ~ 0(2);

x[9] ~ 0(2);

The output changes accordingly:

9 Hilbert basis elements

0 Hilbert basis elements of degree 1

4 extreme rays

4 support hyperplanes

embedding dimension = 9

rank = 3

external index = 4

size of triangulation = 2

resulting sum of |det|s = 8

grading:

1 1 1 0 0 0 0 0 0

with denominator = 3

degrees of extreme rays:

2: 4
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multiplicity = 1

Hilbert series:

1 -1 3 1

denominator with 3 factors:

1: 1 2: 2

degree of Hilbert Series as rational function = -2

Hilbert series with cyclotomic denominator:

-1 1 -3 -1

cyclotomic denominator:

1: 3 2: 2

Hilbert quasi-polynomial of period 2:

0: 2 2 1

1: -1 0 1

with common denominator = 2

After the extensive discussion in Section 2.5 it should be easy for you to write down the Hilbert
series and the Hilbert quasipolynomial. (But keep in mind that the grading has a denominator.)

rank of class group = 1

finite cyclic summands:

4: 2

***********************************************************************

0 Hilbert basis elements of degree 1:

9 further Hilbert basis elements of higher degree:

...

4 extreme rays:

0 4 2 4 2 0 2 0 4

2 0 4 4 2 0 0 4 2

2 4 0 0 2 4 4 0 2

4 0 2 0 2 4 2 4 0

We have listed the extreme rays since they have changed after the introduction of the congru-
ences, although the cone has not changed. The reason is that Normaliz always chooses the
extreme rays from the efficient lattice E.

4 support hyperplanes:

...
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6 equations:

... 3 basis elements of lattice:

2 0 -2 -4 0 4 2 0 -2

2 congruences: 0 1 2 3 1 -1 0 1 2

1 0 0 0 0 0 0 0 0 2 0 0 6 8 2 -4 -2 4 4

0 1 0 0 1 0 0 0 0 2

The rank of the lattice has of course not changed, but after the introduction of the congruences
the basis has changed.

2.6.2. The lattice as input

It is possible to define the lattice by generators. We demonstrate this for the magic squares
with even corners. The lattice has just been computed (3x3magiceven_lat.in):

amb_space 9

lattice 3

2 0 -2 -4 0 4 2 0 -2

0 1 2 3 1 -1 0 1 2

0 0 6 8 2 -4 -2 4 4

grading

1 1 1 0 0 0 0 0 0

It produces the same output as the version starting from equations and congruences.

lattice has a variant that takes the saturation of the sublattice generated by the input vectors
(3x3magic_sat.in):

amb_space 9

saturation 3

2 0 -2 -4 0 4 2 0 -2

0 1 2 3 1 -1 0 1 2

0 0 6 8 2 -4 -2 4 4

grading

1 1 1 0 0 0 0 0 0

Clearly, we remove the congruences by this choice and arrive at the output of 3x3magic.in.

2.7. Decomposition in a numerical semigroup

Let S = 〈6,10,15〉, the numerical semigroup generated by 6,10,15. How can 97 be written as
a sum in the generators?

In other words: we want to find all nonnegative integral solutions to the equation

6x1 +10x2 +15x3 = 97
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Input (NumSemi.in):

amb_space 3

constraints 1 symbolic

6x[1] + 10x[2] + 15x[3] = 97;

The equation cuts out a triangle from the positive orthant.

The set of solutions is a module over the monoid M of solutions of the homogeneous equation
6x1 +10x2 +15x3 = 0. So M = 0.

6 module generators:

2 1 5 1

2 4 3 1

2 7 1 1

7 1 3 1

7 4 1 1

12 1 1 1

0 Hilbert basis elements of recession monoid:

The last line is as expected, and the 6 module generators are the goal of the computation.

Normaliz is smart enough to recognize that it must compute the lattice points in a polygon,
and does exactly this. You can recognize it in the console output: it contains the line

Computing approximating polytopee

Moreover, the line indicates that Normaliz uses its approximation algorithm to find the lattice
points in this polytope. See Section 6.1. Further inspection shows that the approximating
lattice polytopehas 6 vertices, namely for each original vertex thre rwo neighboring lattice
points on its coordinate axis.

For those who like to play: add the option --NoSymmetrization to the command line. Then
the terminal output will change, and the polytope is computed exactly as it comes.

2.8. A job for the dual algorithm

We increase the size of the magic squares to 5× 5. Normaliz can do the same computation
as for 3× 3 squares, but this will take some minutes. Suppose we are only interested in the
Hilbert basis, we should use the dual algorithm for this example. The input file is 5x5dual.in:

amb_space 25

equations 11

1 1 1 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

1 1 1 1 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0

grading

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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HilbertBasis

The input file does not say anything about the dual algorithm mentioned in the section title.
With this inputit is chosen automatically. See Section 6.4 for a discussion of when this hap-
pens. But you can insist on the dual algorithm by adding DualMode to the input (or -d to the
command line). Or, if you want to compare it to the primal algorithm add PrimalMode (or -P
to the command line).

The Hilbert basis contains 4828 elements, too many to be listed here.

If you want to run this example with default computation goals, use the file 5x5.in. It will
compute the Hilbert basis and the Hilbert series, and the latter with HSOP:

Hilbert series (HSOP):

1 15 356 4692 36324 198467 ... 198467 36324 4692 356 15 1

denominator with 15 factors:

1: 5 2: 3 6: 2 12: 1 60: 2 420: 1 1260: 1

degree of Hilbert Series as rational function = -5

The numerator of the Hilbert Series is symmetric.

In view of the length of the numerator of the Hilbert series it may be difficult to observe the
symmetry. So Normaliz does it for you.

The size 6×6 is out of reach for the Hilbert series, but the Hilbert basis can be computed (in
the automatically chosen dual mode). It takes some hours.

2.9. A dull polyhedron

We want to compute the polyhedron defined by the inequalities

ξ2 ≥−1/2,
ξ2 ≤ 3/2,
ξ2 ≤ ξ1 +3/2.

They are contained in the input file InhomIneq.in:

amb_space 2

constraints 3

0 1 >= -1/2

0 1 <= 3/2

-1 1 <= 3/2

grading

unit_vector 1

The grading says that we want to count points by the first coordinate.
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It yields the output

2 module generators

1 Hilbert basis elements of recession monoid

2 vertices of polyhedron

1 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 1

size of triangulation = 1

resulting sum of |det|s = 8

dehomogenization:

0 0 1

grading:

1 0 0

The interpretation of the grading requires some care in the inhomogeneous case. We have
extended the input grading vector by an entry 0 to match the embedding dimension. For the
computation of the degrees of lattice points in the ambient space you can either use only the
first 2 coordinates or take the full scalar product of the point in homogenized coordinates and
the extended grading vector.

module rank = 2

multiplicity = 2

The module rank is 2 in this case since we have two “layers” in the solution module that are
parallel to the recession monoid. This is of course also reflected in the Hilbert series.

Hilbert series:

1 1

denominator with 1 factors:

1: 1

shift = -1

We haven’t seen a shift yet. It is always printed (necessarily) if the Hilbert series does not start
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in degree 0. In our case it starts in degree −1 as indicated by the shift −1. We thus get the
Hilbert series

t−1 t + t
1− t

=
t−1 +1

1− t
.

Note: We used the opposite convention for the shift in Normaliz 2.

Note that the Hilbert (quasi)polynomial is always computed for the unshifted monoid defined
by the input data. (This was different in previous versions of Normaliz.)

degree of Hilbert Series as rational function = -1

Hilbert polynomial:

2

with common denominator = 1

***********************************************************************

2 module generators:

-1 0 1

0 1 1

1 Hilbert basis elements of recession monoid:

1 0 0

2 vertices of polyhedron:

-4 -1 2

0 3 2

1 extreme rays of recession cone:

1 0 0

3 support hyperplanes of polyhedron (homogenized):

0 -2 3

0 2 1

2 -2 3

The dual algorithm that was used in Section 2.8 can also be applied to inhomogeneous com-
putations. We would of course loose the Hilbert series. In certain cases it may be preferable
to suppress the computation of the vertices of the polyhedron if you are only interested in the
integer points; see Section 4.6.

2.9.1. Defining it by generators

If the polyhedron is given by its vertices and the recession cone, we can define it by these data
(InhomIneq_gen.in):
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amb_space 2

vertices 2

-4 -1 2

0 3 2

cone 1

1 0

grading

unit_vector 1

The output is identical to the version starting from the inequalities.

2.10. The Condorcet paradox

In this section we assume that you use an executable of Normaliz that was built with Co-
CoALib (ee Section 10), for example an executable for Linux or Mac OS from the Normaliz
web site. If not, then simply disregard any remark on symmetrization. Everything runs very
quickly also without it.

In social choice elections each of the k voters picks a linear preference order of the n candi-
dates. There are n! such orders. The election result is the vector (x1, . . . ,xN),N=n!, in which
xi is the number of voters that have chosen the i-th preference order in, say, lexicographic
enumeration of these orders. In the following we assume the impartial anonymous culture
according to which every preference order has the same basic weight of 1/n!.

We say that candidate A beats candidate B if the majority of the voters prefers A to B. As the
Marquis de Condorcet (and others) observed, “beats” is not transitive, and an election may
exhibit the Condorcet paradox: there is no Condorcet winner. (See [11] and the references
given there for more information.)

We want to find the probability for k→∞ that there is a Condorcet winner for n= 4 candidates.
The event that A is the Condorcet winner can be expressed by linear inequalities on the election
outcome (a point in 24-space). The wanted probability is the lattice normalized volume of the
polytope cut out by the inequalities at k = 1. The file Condorcet.in:

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

Multiplicity

The first inequality expresses that A beats B, the second and the third say that A beats C and
D. (So far we do not exclude ties, and they need not be excluded for probabilities as k→ ∞.)
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In addition to these inequalities we must restrict all variables to nonnegative values, and this
is achieved by adding the attribute nonnegative. The grading is set by total_degree. It
replaces the grading vector with 24 entries 1. Finally Multiplicity sets the computation
goal.

From the output file we only mention the quantity we are out for:

multiplicity = 1717/8192

Since there are 4 candidates, the probability for the existence of a Condorcet winner is 1717/2048.

We can refine the information on the Condorcet paradox by computing the Hilbert series.
Either we delete Multiplicity from the input file or, better, we add --HilbertSeries (or
simply -q) on the command line. The result:

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6

denominator with 24 factors:

1: 1 2: 14 4: 9

degree of Hilbert Series as rational function = -25

Normaliz automatically uses symmetrization for this example , but it is too small to demon-
strate the power of symmetrization. For others, symmetrization can convert days into seconds.

Since symmetrization is used, you will also find a file Condorcet.symm.out in your directory.
It contains the data computed for the symmetrization. You need not care at this point. We take
continue the discussion of symmetrization in the Sections ?? and ??.

2.10.1. Excluding ties

Now we are more ambitious and want to compute the Hilbert series for the Condorcet para-
dox, or more precisely, the number of election outcomes having A as the Condorcet winner
depending on the number k of voters. Moreover, as it is customary in social choice theory, we
want to exclude ties. The input file changes to CondorcetSemi.in:

amb_space 24

excluded_faces 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

HilbertSeries

We could omit HilbertSeries, and the computation would include the Hilbert basis. The
type excluded_faces only affects the Hilbert series. In every other respect it is equivalent to
inequalities.
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From the file CondorcetSemi.out we only display the Hilbert series:

Hilbert series:

6 15 481 890 12346 ... 100915 69821 8655 4581 363 133 5 1

denominator with 24 factors:

1: 1 2: 14 4: 9

shift = 1

degree of Hilbert Series as rational function = -24

Surprisingly, this looks like the Hilbert series in the previous section read backwards, roughly
speaking. This is true, and one can explain it as we will see below.

It is justified to ask why we don’t use strict_inequalities instead of excluded_faces. It
does of course give the same Hilbert series. However, Normaliz canot (yet) apply symmetriza-
tion in inhomogeneous computations. Moreover, the algorithmic approach is different, and
according to our experience excluded_faces is more efficient, independently of symmetriza-
tion.

2.10.2. At least one vote for every preference order

Suppose we are only interested in elections in which every preference order is chosen by at
least one voter. This can be modeled as follows (Condorcet_one.in):

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

strict_signs

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

total_degree

HilbertSeries

The entry 1 at position i of the vector strict_signs imposes the inequality xi≥ 1. A−1 would
impose the inequality xi ≤−1, and the entry 0 imposes no condition on the i-th coordinate.

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6

denominator with 24 factors:

1: 1 2: 14 4: 9

shift = 24

degree of Hilbert Series as rational function = -1

Again we encounter (almost) the Hilbert series of the Condorcet paradox (without side con-
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ditions). It is time to explain this coincidence. Let C be the Condorcet cone defined by the
nonstrict inequalities, M the monoid of lattice points in it, I1 ⊂ M the ideal of lattice points
avoiding the 3 facets defined by ties, I2 the ideal of lattice points with strictly positive coordi-
nates, and finally I3 the ideal of lattice points in the interior of C. Moreover, let 1 ∈ Z24 be the
vector with all entries 1.

Since 1 lies in the three facets defining the ties, it follows that I2 = M+1. This explains why
we obtain the Hilbert series of I2 by multiplying the Hilbert series of M by t24, as just observed.
Generalized Ehrhart reciprocity (see [5, Theorem 6.70]) then explains the Hilbert series of I1
that we observed in the previous section. Finally, the Hilbert series of I3 that we don’t have
displayed is obtained from that of M by “ordinary” Ehrhart reciprocity. But we can also obtain
I1 from I3: I1 = I3−1, and generalized reciprocity follows from ordinary reciprocity in this
very special case.

The essential point in these arguments (apart from reciprocity) is that 1 lies in all support
hyperplanes of C except the coordinate hyperplanes.

You can easily compute the Hilbert series of I3 by making all inequalities strict.

As the terminal output shows, symmetrization has not been applied for the reason mentioned
above: strict_signs is an inhomogeneous input type. It would of course be possible to
encode the strict signs as excluded_faces. Then the sparse format of matrices is very handy:

excludred_faces 24

1:1;

1:2;

...

1:24;

This is a shorthand for the unit matrix.

2.11. Testing normality

We want to test the monoid A4×4×3 defined by 4×4×3 contingency tables for normality (see
[6] for the background). The input file is A443.in:

amb_space 40

cone_and_lattice 48

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

HilbertBasis

Why cone_and_lattice? Well, we want to find out whether the monoid is normal, i.e.,
whether M = C(M)∩ gp(M). If M is even integrally closed in Z24, then it is certainly inte-
grally closed in the evidently smaller lattice gp(M), but the converse does not hold in general,
and therefore we work with the lattice generated by the monoid generators.

It turns out that the monoid is indeed normal:
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original monoid is integrally closed

Actually the output file reveals that M is even integrally closed in Z24: the external index is 1,
and therefore gp(M) is integrally closed in Z24.

The output files also shows that there is a grading on Z24 under which all our generators have
degree 1. We could have seen this ourselves: Every generator has exactly one entry 1 in the
first 16 coordinates. (This is clear from the construction of M.)

A noteworthy detail from the output file:

size of partial triangulation = 48

It shows that Normaliz uses only a partial triangulation in Hilbert basis computations; see [6].

It is no problem to compute the Hilbert series as well if you are interested in it. Simply add -q

to the command line or remove HilberBasis from the input file. Then a full triangulation is
needed (size 2,654,272).

Similar examples are A543, A553 and A643. The latter is not normal, as we will see below. Even
on a standard PC or laptop, the Hilbert basis computation does not take very long because
Normaliz uses only a partial triangulation. The Hilbert series can still be determined, but the
computation time will grow considerably since the it requires a full triangulation. See [9] for
timings.

2.11.1. Computing just a witness

If the Hilbert basis is large and there are many support hyperplanes, memory can become an
issue for Normaliz, as well as computation time. Often one is only interested in deciding
whether the given monoid is integrally closed (or normal). In the negative case it is enough
to find a single element that is not in the original monoid – a witness disproving integral
closedness. As soon as such a witness is found, Normaliz stops the Hilbert basis computation
(but will continue to compute other data if they are asked for). We look at the example A643.in
(for which the full Hilbert basis is not really a problem):

amb_space 54

cone_and_lattice 72

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ...

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ...

IsIntegrallyClosed

Don’t add HilbertBasis because it will overrule IsIntegrallyCosed!

The output:

72 extreme rays

153858 support hyperplanes
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embedding dimension = 54

rank = 42

external index = 1

internal index = 1

original monoid is not integrally closed

witness for not being integrally closed:

0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 ...

grading:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 ...

degrees of extreme rays:

1: 72

***********************************************************************

72 extreme rays:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...

...

If you repeat such a computation, you may very well get a different witness if several parallel
threads find witnesses. Only one of them is delivered.

2.12. Inhomogeneous congruences

We want to compute the nonnegative solutions of the simultaneous inhomogeneous congru-
ences

x1 +2x2 ≡ 3 (7),
2x1 +2x2 ≡ 4 (13)

in two variables. The input file InhomCong.in is

amb_space 2

constraints 2 symbolic

x[1] + 2x[2] ~ 3 (7);

2x[1] + 2x[2] ~ 4 (13);

This is an example of input of symbolic constraints. We use ~ as the best ASCII character for
representing the congruence sign ≡.

Alternatively one can use a matrix in the input As for which we must move the right hand side
over to the left.

amb_space 2

inhom_congruences 2

1 2 -3 7

2 2 -4 13
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It is certainly harder to read.

The first vector list in the output:

3 module generators:

0 54 1

1 1 1

80 0 1

Easy to check: if (1,1) is a solution, then it must generate the module of solutions together
with the generators of the intersections with the coordinate axes. Perhaps more difficult to
find:

6 Hilbert basis elements of recession monoid:

0 91 0

1 38 0

3 23 0 1 vertices of polyhedron:

5 8 0 0 0 91

12 1 0

91 0 0

Strange, why is (0,0,1), representing the origin in R2, not listed as a vertex as well? Well the
vertex shown represents an extreme ray in the lattice E, and (0,0,1) does not belong to E.

2 extreme rays of recession cone:

0 91 0

91 0 0

3 support hyperplanes of polyhedron (homogenized)

0 0 1

0 1 0

1 0 0

1 congruences:

58 32 1 91

Normaliz has simplified the system of congruences to a single one.

3 basis elements of lattice:

1 0 33

0 1 -32

0 0 91

Again, don’t forget that Normaliz prints a basis of the efficient lattice E.

2.12.1. Lattice and offset

The set of solutions to the inhomogeneous system is an affine lattice in R2. The lattice basis
of E above does not immediately let us write down the set of solutions in the form w+L0 with
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a subgroup L0, but we can easily transform the basis of E: just add the first and the second
vector to obtain (1,1,1) – we already know that it belongs to E and any element in E with last
coordinate 1 would do. Try the file InhomCongLat.in:

amb_space 2

offset

1 1

lattice 2

32 33

91 91

2.12.2. Variation of the signs

Suppose we want to solve the system of congruences under the condition that both variables
are negative (InhomCongSigns.in):

amb_space 2

inhom_congruences 2

1 2 -3 7

2 2 -4 13

signs

-1 -1

The two entries of the sign vector impose the sign conditions x1 ≤ 0 and x2 ≤ 0.

From the output we see that the module generators are more complicated now:

4 module generators:

-11 0 1

-4 -7 1

-2 -22 1

0 -37 1

The Hilbert basis of the recession monoid is simply that of the nonnegative case multiplied by
−1.

2.13. Integral closure and Rees algebra of a monomial ideal

Next, let us discuss the example MonIdeal.in (typeset in two columns):

amb_space 5

rees_algebra 9

1 2 1 2 1 0 3 4

3 1 1 3 5 1 0 1

2 5 1 0 2 4 1 5
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0 2 4 3 2 2 2 4

0 2 3 4

The input vectors are the exponent vectors of a monomial ideal I in the ring K[X1,X2,X3,X4].
We want to compute the normalization of the Rees algebra of the ideal. In particular we can
extract from it the integral closure of the ideal. Since we must introduce an extra variable T ,
we have amb_space 5.

In the Hilbert basis we see the exponent vectors of the Xi, namely the unit vectors with last
component 0. The vectors with last component 1 represent the integral closure I of the ideal.
There is a vector with last component 2, showing that the integral closure of I2 is larger than I2.

16 Hilbert basis elements:

0 0 0 1 0

...

5 1 0 1 1

6 5 2 2 2

11 generators of integral closure of the ideal:

0 2 3 4

...

5 1 0 1

The output of the generators of I is the only place where we suppress the homogenizing vari-
able for “historic” reasons. If we extract the vectors with last component 1 from the extreme
rays, then we obtain the smallest monomial ideal that has the same integral closure as I.

10 extreme rays:

0 0 0 1 0

...

5 1 0 1 1

The support hyperplanes which are not just sign conditions describe primary decompositions
of all the ideals Ik by valuation ideals. It is not hard to see that none of them can be omitted for
large k (for example, see: W. Bruns and G. Restuccia, Canonical modules of Rees algebras. J.
Pure Appl. Algebra 201, 189–203 (2005)).

23 support hyperplanes:

0 0 0 0 1

0 ...

6 0 1 3 -13

2.13.1. Only the integral closure

If only the integral closure of the ideal is to be computed, one can choose the input as follows
(IntClMonId.in):
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amb_space 4

vertices 9

1 2 1 2 1

...

2 2 2 4 1

cone 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The generators of the integral closure appear as module generators in the output and the gen-
erators of the smallest monomial ideal with this integral closure are the vertices of the polyhe-
dron.

2.14. Convex hull computation/vertex enumeration

Normaliz computes convex hulls as should be very clear by now, and the only purpose of
this section is to emphasize that Normaiz can be restricted to this task by setting an explicit
computation goal. By convex hull computation we mean the determination of the support
hyperplanes of a polyhedron is given by generators (or vertices). The converse operation is
vertex enumeration. Both amount to the dualization of a cone, and can therefore be done by
the same algorithm.

As an example we take the input file cyclicpolytope30-15.in, the cyclic polytope of dimen-
sion 15 with 30 vertices (suggested by D. Avis and Ch. Jordan):

/* cyclic polytope of dimension 15 with 30 vertices */

amb_space 16

polytope 30

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

...

30 900 27000 810000 ... 478296900000000000000 14348907000000000000000

SupportHyperplanes

Already the entries of the vertices show that the computation cannot be done in 64 bit arith-
metic. But you need not be worried. Just start Normaliz as usual. It will simply switch to
infinite precision by itself, as shown by the terminal output (use the option -c or --Verbose).

\.....|

Normaliz 3.2.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

January 2017 \.|

\|
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************************************************************
Compute: SupportHyperplanes

Could not convert 15181127029874798299.

Arithmetic Overflow detected, try a bigger integer type!

Restarting with a bigger type.

************************************************************
starting primal algorithm (only support hyperplanes) ...

Generators sorted lexicographically

Start simplex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gen=17, 72 hyp

gen=18, 240 hyp

gen=19, 660 hyp

gen=20, 1584 hyp

gen=21, 3432 hyp

gen=22, 6864 hyp

gen=23, 12870 hyp

gen=24, 22880 hyp

gen=25, 38896 hyp

gen=26, 63648 hyp

gen=27, 100776 hyp

gen=28, 155040 hyp

gen=29, 232560 hyp

gen=30, 341088 hyp

Pointed since graded

Select extreme rays via comparison ... done.

------------------------------------------------------------

transforming data... done.

Have a look at the output file if you are not afraid of 341088 linear forms.

If you have liiked closely at the terminal output above, you should have stumbled on the lines

Could not convert 15181127029874798299.

Arithmetic Overflow detected, try a bigger integer type!

They show that Normaliz has tried the computation in 64 bit integers, but encountered a num-
ber that is too large for this precision. It has automatically switched to infinite precision. (See
Section 4.4 for more information on integer types.)

2.15. The integer hull

The integer hull of a polyhedron P is the convex hull of the set of lattice points in P (despite of
its name, it usually does not contain P). Normaliz computes by first finding the lattice points
and then computing the convex hull. The computation of the integer hull is requested by the
computation goal IntegerHull.

The computation is somewhat special since it creates a second cone (and lattice) Cint. In
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homogeneous computations the degree 1 vectors generate Cint by an input matrix of type
cone_and_lattice. In inhomogeneous computations the module generators and the Hilbert
basis of the recession cone are combined and generate Cint. Therefore the recession cone is
reproduced, even if the polyhedron should not contain a lattice point.

The integer hull computation itself is always inhomogeneous. The output file for Cint is
<project>.IntHull.out.

As a very simple example we take rationalIH.in (rational.in augmented by IntegerHull):

amb_space 3

cone 3

1 1 2

-1 -1 3

1 -2 4

grading

unit_vector 3

HilbertSeries

IntegerHull

It is our rational polytope from Section 2.5. We know already that the origin is the only lattice
point it contains. Nevertheless let us have a look at rationalIH.IntHull.out:

1 vertices of polyhedron

0 extreme rays of recession cone

1 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 0

rank of recession monoid = 0

internal index = 1

***********************************************************************

1 vertices of polyhedron:

0 0 1

0 extreme rays of recession cone:

1 support hyperplanes of polyhedron (homogenized):

0 0 1

2 equations:

1 0 0

0 1 0

1 basis elements of lattice:
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0 0 1

Since the lattice points in P are already known, the goal was to compute the constraints defin-
ing the integer hull. Note that all the constraints defining the integer hull can be different from
those defining P. In this case the integer hull is cit out by the 2 equations.

As a second example we take the polyhedron of Section 2.9. The integer hull is the ”green”
polyhedron:

The input is InhomIneqIH.in ( InhomIneq.in augmented by IntegerHull). The data of the
integer hull are found in InhomIneqIH.IntHull.out:

...

2 vertices of polyhedron:

-1 0 1

0 1 1

1 extreme rays of recession cone:

1 0 0

3 support hyperplanes of polyhedron (homogenized):

0 -1 1

0 1 0

1 -1 1

2.16. Starting from a binomial ideal

As an example, we consider the binomial ideal generated by

X2
1 X2−X4X5X6, X1X2

4 −X3X5X6, X1X2X3−X2
5 X6.

We want to find an embedding of the toric ring it defines and the normalization of the toric
ring. The input vectors are obtained as the differences of the two exponent vectors in the
binomials. So the input ideal lattice_ideal.in is

amb_space 6

lattice_ideal 3

2 1 0 -1 -1 -1

1 0 -1 2 -1 -1

1 1 1 0 -2 -1
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In order to avoid special input rules for this case in which our object is not defined as a
subset of an ambient space, but as a quotient of type generators/relations, we abuse the name
amb_space: it determines the space in which the input vectors live.

We get the output

6 original generators of the toric ring

namely the residue classes of the indeterminates.

9 Hilbert basis elements

9 Hilbert basis elements of degree 1

So the toric ring defined by the binomials is not normal. Normaliz found the standard grading
on the toric ring. The normalization is generated in degree 1, too (in this case).

5 extreme rays

5 support hyperplanes

embedding dimension = 3

rank = 3 (maximal)

external index = 1

internal index = 1

original monoid is not integrally closed

We saw that already.

size of triangulation = 5

resulting sum of |det|s = 10

grading:

-2 1 1

This is the grading on the ambient space (or polynomial ring) defining the standard grading
on our subalgebra. The enumerative data that follow are those of the normalization!

degrees of extreme rays:

1: 5

Hilbert basis elements are of degree 1

multiplicity = 10

Hilbert series:

1 6 3

denominator with 3 factors:

1: 3

degree of Hilbert Series as rational function = -1
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Hilbert polynomial:

1 3 5

with common denominator = 1

rank of class group = 2

class group is free

***********************************************************************

6 original generators:

0 0 1

3 5 2

0 1 0

1 2 1

1 3 0

1 0 3

This is an embedding of the toric ring defined by the binomials. There are many choices, and
Normaliz has taken one of them. You should check that the generators in this order satisfy
the binomial equations. Turning to the ring theoretic interpretation, we can say that the toric
ring defined by the binomial equations can be embedded into K[Y1,Y2,Y3] as a monomial
subalgebra that is generated by Y 0

1 Y 0
2 Y 1

3 ,. . . ,Y 1
1 Y 0

2 Y 3
3 .

Now the generators of the normalization:

9 Hilbert basis elements of degree 1: 5 extreme rays:

0 0 1 0 0 1

0 1 0 0 1 0

1 0 3 1 0 3

1 1 2 1 3 0

1 2 1 3 5 2

1 3 0

2 3 2 5 support hyperplanes:

2 4 1 -15 7 5

3 5 2 -3 1 2

0 0 1

0 1 0

1 0 0

0 further Hilbert basis elements of higher degree:

3. The input file

The input file <project>.in consists of one or several items. There are several types of items:

(1) definition of the ambient space,
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(2) matrices with integer or rational entries (depending on the type),
(3) vectors with integer entries,
(4) constraints in or symbolic format,
(5) a polynomial,
(6) computation goals and algorithmic variants,
(7) comments.

An item cannot include another item. In particular, comments can only be included between
other items, but not within another item. Matrices and vectors can have two different formats,
plain and formatted.

Matrices and vectors are classified by the following attributes:

(1) generators, constraints, accessory,
(2) cone/polyhedron, (affine) lattice,
(3) homogeneous, inhomogeneous.

In this classification, equations are considered as constraints on the lattice because Normaliz
treats them as such – for good reason: it is very easy to intersect a lattice with a hyperplane.

The line structure is irrelevant for the interpretation of the input, but it is advisable to use it for
the readability of the input file.

The input syntax of Normaliz 2 can still be used. It is explained in Appendix C.

3.1. Input items

3.1.1. The ambient space and lattice

The ambient space is specified as follows:

amb_space <d>

where <d> stands for the dimension d of the ambient vector space Rd in which the geometric
objects live. The ambient lattice A is set to Zd .

Alternatively one can define the ambient space implicitly by

amb_space auto

In this case the dimension of the ambient space is determined by Normaliz from the first
formatted vector or matrix in the input file. It is clear that any input item that requites the
knowledge of the dimension can only follow after the first formatted vector or matrix.

In the following the letter d will always denote the dimension set with amb_space.

An example:

amb_space 5

indicates that polyhedra and lattices are subobjects of R5. The ambient lattice is Z5.

The first non-comment input item must specify the ambient space.
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3.1.2. Plain vectors

A plain vector is built as follows:

<T>

<x>

Again <T> denotes the type and <x> is the vector itself. The number of components is deter-
mined by the type of the vector and the dimension of the ambient space. At present, all vectors
have length d.

Example:

grading

1 0 0

Normaliz allows also the input ofsparse vectors. Sparse input is signalized by the key word
sparse as the first entry. It is followed by entries of type <col>:<val> where <pos> denotes
the column and <val> the value in that column. (The unspecified columns have entry 0.) A
sparse vector is terminated by the character ; .

Exaple:

grading

sparse 1:1;

For certain vectors there also exist shortcuts. Examples:

total_degree

unit_vector 25

3.1.3. Formatted vectors

A formatted vector is built as follows:
<T>

[ <x> ]

where <T> denotes the type and <x> is the vector itself. The components can be separated
by white space, commas or semicolons. An example showing all possibilities (not recom-
mended):

grading

[1,0; 0 5]

3.1.4. Plain matrices

A plain matrix is built as follows:
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<T> <m>

<x_1>

...

<x_m>

Here <T> denotes the type of the matrix, <m> the number of rows, and <x_1>,...,<x_m> are the
rows. Some types allow rational matrix entries, others are restricted to integers; see Section
??.

The number of columns is implicitly defined by the dimension of the ambient space and the
type of the matrix. Example (with amb_space 3):

cone 3

1/3 2 3

4 5 6

11 12/7 13/21

Normaliz allows the input of matrices in transposed form:

<T> transpose <n>

<x_1>

...

<x_m>

Note that <n> is now the number of columns of the matrix that follows it (assumed to be the
number of input vectors). The number of rows is determined by the dimension of the ambient
space and the type of the matrix. Example:

cone transpose 3

1 0 3/2

0 1/9 4

is equivalent to

cone 3

1 0

0 1/9

3/2 4

Like evctors, matrices have a sparse input variant, again signalized by the key word sparse.
The rows are sparse vectors with entries <col>:<val>, and each row is concluded by the
character ;.

Example:

inequalities 3 sparse

1:1;

2:1;

3:1;
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chooses the 3× 3 unit matrix as a matrix of type inequalities. Note that also in case of
transposed matrices, sparse entry is row by row.

Matrices may have zero rows. Such empty matrices like

inhom_inequalities 0

can be used to make the input inhomogeneous (Section 3.1.13) or to avoid the automatic choice
of the positive orthant in certain cases (Section 3.1.14). (The empty inhom_inequalities hve
both effects simultaneously.) Apart from these effects, empty matrices have no influence on
the computation.

3.1.5. Formatted matrices

A formatted matrix is built as follows:
<T>

[ [<x_1>]

...

[<x_m>] ]

Here <T> denotes the type of the matrix and <x_1>,. . . ,<x_m> are vectors. Legal separators
are white space, commas and semicolons. An example showing all possibilities (not really
recommended):

cone [

[ 2 1][3/7 4];

[0 1],

[9 10] [11 12/13]

]

Similarly as plain matrices, formatted matrices can be given in transposed form, and they can
be empty.

3.1.6. Constraints in tabular format

This input type is somewhat closer to standard notation than the encoding of constraints in
matrices. The general type of equations and inequalities is

<x> <rel> <int>;

where <x> denotes a vector of length d, <rel> is one of the relations =, <=, >=, <, > and
<int> is an integer.

Congruences have the form

<x> ~ <int> (<mod>);

where <mod> is a nonzero integer.
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Examples:

1/2 -2 >= 5

1 -1/7 = 0

-1 1 ~ 7 (9)

Note: all numbers and relation signs must be separated by white space.

3.1.7. Constraints in symbolic format

This input type is even closer to standard notation than the encoding of constraints in matrices
or in tabular format. It is especially useful if the constraints are sparse. Instead of assigning a
value to a coordinate via its position in a vector, it uses coordinates named x[<n>] where <n>

is the index of the coordinate. The index is counted from 1.

The general type of equations and inequalities is

<lhs> <rel> <rhs>;

where <lhs> and <rhs> denote linear function of the x<n> with intweger coefficients. As
above, <rel> is one of the relations =, <=, >=, <, >. (An empty <lhs> or <rhs> has the
value 0.) Note the terminating semicolon.

Congruences have the form

<lhs> ~ <rhs> (<mod>);

where <mod> is a nonzero integer.

Examples:

1/3x[1] >= 2x[2] + 5;

x[1]+1=1/4x[2] ;

-x[1] + x[2] ~ 7 (9);

There is no need to insert white space for separation, but it may be inserted anywhere where
it does not disrupt numbers or relation signs.

3.1.8. Polynomials

For the computation of weighted Ehrhart series and integrals Normaliz needs the input of a
polynomial with rational coefficients. The polynomial is first read as a string. For the com-
putation the string is converted by the input function of CoCoALib [1]. Therefore any string
representing a valid CoCoA expression is allowed. However the names of the indeterminates
are fixed: x[1],. . . ,x[<N> where <N>] is the value of amb_space. The polynomial must be
concluded by a semicolon.

Example:

(x[1]+1)*(x[1]+2)*(x[1]+3)*(x[1]+4)*(x[1]+5)*
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(x[2]+1)*(x[3]+1)*(x[4]+1)*(x[5]+1)*(x[6]+1)*(x[7]+1)*
(x[8]+1)*(x[8]+2)*(x[8]+3)*(x[8]+4)*(x[8]+5)*1/14400;

(x[1]*x[2]*x[3]*x[4])^2*(x[1]-x[2])^2*(x[1]-x[3])^2*
(x[1]-x[4])^2*(x[2]-x[3])^2*(x[2]-x[4])^2*(x[3]-x[4])^2;

3.1.9. Rational numbers

Rational numbers are allowed in onput matrices, but not in all. They are not allowed in vectors
and in matrices containing lattice generators and in congruences, namely in

lattice cone_and_lattice normalization offset

congruences inhom_congruences rees_algebra lattice_ideal

grading dehomogenization signs strict_signs

They are allowed in saturation since it defines the intersection of the vector space generated
by the rows of the matrix with the integral lattice.

Note: Only positive numbers are allowed as denominators. Negative denominators may result
in a segmentation fault.

Normaliz first reduces the input numbers to lowest terms. Then each row of a matrix is mul-
tiplied by the least common multiple of the demoninators of its entries. In all applications
in which the original monoid generators olay a role, one should use only integers in input
matrices to avoid any ambiguity.

3.1.10. Computation goals and algorithmic variants

These are single or compound words, such as

HilbertBasis

Multiplicity

The file can contain several computation goals, as in this example.

3.1.11. Comments

A comment has the form
/* <text> */

where <text> stands for the text of the comment. It can have arbitrary length and stretch over
several lines. Example:

/* This is a comment

*/
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Comments are only allowed at places where also a new keyword would be allowed, especially
not between the entries of a matrix or a vector. Comments can not be nested.

3.1.12. Restrictions

Input items can almost freely be combined, but there are some restrictions:

(1) Every input type can appear only once.
(2) The types

cone, cone_and_lattice, polytope, rees_algebra

exclude each other mutually.
(3) The input type subspace excludes polytope and rees_algebra.
(4) The types

lattice, saturation, cone_and_lattice
exclude each other mutually.

(5) polytope can not be combined with grading.
(6) The only type that can be combined with lattice_ideal is grading.
(7) The following types cannot be combined with inhomogeneous types or dehomogenization:

polytope, rees_algebra, excluded_faces

(8) The following types cannot be combined with inhomogeneous types:
dehomogenization, support_hyperplanes

3.1.13. Homogeneous and inhomogeneous input

Apart from therestrictions listed in the previos section, homogeneous and inhomogeneous
types can be combined as well as generators and constraints. A single inhomogeneous type
or dehomogenization in the input triggers an inhomogeneous computation. The input item of
inhomogeneous type may be an empty matrix.

3.1.14. Default values

If there is no lattice defining item, Normaliz (virtually) inserts the the unit matrix as an input
item of type lattice. If there is no cone defining item, the unit matrix is (additionally) inserted
as an input item of type cone.

If the input is inhomogeneous, then Normaliz provides default values for vertices and the
offset as follows:

(1) If there is an input matrix of lattice type lattice, but no offset, then the offset 0 is
inserted.

(2) If there is an input matrix of type cone, but no vertices, then the vertex 0 is inserted.

An important point. If the input does not contain any cone generators or inequalities, Nor-
maliz automatically assumes that you want to compute in the positive orthant. In order to
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avoid this choice you can add an empty matrix of inequalities. This will not affect the results,
but avoid the sign restriction.

3.1.15. Normaliz takes intersections (almost always)

The input may contain several cone defining items and several lattice defining items.

The sublattice L defined by the lattice input items is the intersection of the sublattices defined
by the single items. The polyhedron P is defined as the intersection of all polyhedra defined
by the single polyhedron defining items. The object then computed by Normaliz is

P∩L.

There are three notable exceptions to the rule that Normaliz takes intersections:

(1) vertices and cone form a unit. Together they define a polyhedron.
(2) The same applies to offset and lattice that together define an affine lattice.
(3) The subspace is added to cone or cone_and_lattice.

3.2. Homogeneous generators

3.2.1. Cones

The main type is cone. The other two types are added for special computations.

cone is a matrix with d columns. Every row represents a vector, and they define the cone
generated by them. Section 2.3, 2cone.in

subspace is a matrix with d columns. The linear subspace generated by the rows is added to
the cone. Section 6.8.4.

polytope is a matrix with d− 1 columns. It is internally converted to cone extending each
row by an entry 1. Section 2.4, polytope.in

rees_algebra is a matrix with d− 1 columns. It is internally converted to type cone in two
steps: (i) each row is extended by an entry 1 to length d. (ii) The first d−1 unit vectors
of length d are appended. Section 2.13, MonIdeal.in.

Moreover, it is possible to define a cone and a lattice by the same matrix:

cone_and_lattice The vectors of the matrix with d columns define both a cone and a lattice.
Section 2.11, A443.in.
If subspace is used in combination with cone_and_lattice, then the sublattice gener-
ated by its rows is added to the lattice generated by cone_and_lattice.

The Normaliz 2 types integral_closure and normalization can still be used. They are
synonyms for cone and cone_and_lattice, respectively.

3.2.2. Lattices

There are 3 types:
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lattice is a matrix with d columns. Every row represents a vector, and they define the lattice
generated by them. Section 2.6.2, 3x3magiceven_lat.in

saturation is a matrix with d columns. Every row represents a vector, and they define the
saturation of the lattice generated by them. Section 2.6.2, 3x3magic_sat.in.

cone_and_lattice See Section 3.2.1.

3.3. Homogeneous Constraints

3.3.1. Cones

inequalities is a matrix with d columns. Every row (ξ1, . . . ,ξd) represents a homogeneous
inequality

ξ1x1 + · · ·+ξdxd ≥ 0, ξi ∈ Z,
for the vectors (x1, . . . ,xd) ∈ Rd . Sections 2.3.2, 2.5.1 , 2cone_ineq.in, poly_ineq.in

signs is a vector with d entries in {−1,0,1}. It stands for a matrix of type inequalities

composed of the sign inequalities xi ≥ 0 for the entry 1 at the i-th component and the
inequality xi ≤ 0 for the entry −1. The entry 0 does not impose an inequality. See
2.12.2, InhomCongSigns.in.

nonnegative It stands for a vector of type sign with all entries equal to 1. See Section 2.10,
Condorcet.in.

excluded_faces is a matrix with d columns. Every row (ξ1, . . . ,ξd) represents an inequality

ξ1x1 + · · ·+ξdxd > 0, ξi ∈ Z,

for the vectors (x1, . . . ,xd) ∈Rd . It is considered as a homogeneous input type though it
defines inhomogeneous inequalities. The faces of the cone excluded by the inequalities
are excluded from the Hilbert series computation, but excluded_faces behaves like
inequalities in every other respect . Section 2.10.1, CondorcetSemi.in.

support_hyperplanes is a matrix with d columns. It requires homogeneous input. It is
the input type for precomputed support hyperplanes. Therefore Normaliz checks if all
input generators satisfy the inequalities defined by them. Apart from this extra check, it
behaves like inequalities. Note that it overrides all other inequalities in the input, but
excluded_faces stiil exclude the faces defined by them. Section 6.12, 2cone_supp.in.

3.3.2. Lattices

equations is a matrix with d columns. Every row (ξ1, . . . ,ξd) represents an equation

ξ1x1 + · · ·+ξdxd = 0, ξi ∈ Z,

for the vectors (x1, . . . ,xd) ∈ Rd . Section 2.6, 3x3magic.in
congruences is a matrix with d+1 columns. Each row (ξ1, . . . ,ξd,c) represents a congruence

ξ1z1 + · · ·+ξdzd ≡ 0 mod c, ξi,c ∈ Z,

for the elements (z1, . . . ,zd) ∈ Zd . Section 2.6.1, 3x3magiceven.in.
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3.4. Inhomogeneous generators

3.4.1. Polyhedra

vertices is a matrix with d+1 columns. Each row (p1, . . . , pd,q), q> 0, specifies a generator
of a polyhedron (not necessarily a vertex), namely

vi =

(
p1

q
, . . . ,

pn

q

)
, pi ∈ Z,q ∈ Z>0,

Section 2.9.1, InhomIneq_gen.in
Note: vertices and cone together define a polyhedron. If vertices is present in the
input, then the default choice for cone is the empty matrix.

The Normaliz 2 input type polyhedron can still be used.

3.4.2. Lattices

offset is a vector with d entries. It defines the origin of the affine lattice. Section 2.12.1,
InhomCongLat.in.

Note: offset and lattice (or saturation) together define an affine lattice. If offset is
present in the input, then the default choice for lattice is the empty matrix.

3.5. Inhomogeneous constraints

3.5.1. Cones

inhom_inequalities is a matrix with d +1 columns. We consider inequalities

ξ1x1 + · · ·+ξdxd ≥ η , ξi,η ∈ Z,

rewritten as
ξ1x1 + · · ·+ξdxd +(−η)≥ 0

and then represented by the input vectors

(ξ1, . . . ,ξd,−η).

Section 2.9, InhomIneq.in.
strict_inequalities is a matrix with d columns. We consider inequalities

ξ1x1 + · · ·+ξdxd ≥ 1, ξi ∈ Z,

represented by the input vectors
(ξ1, . . . ,ξd).

Section 2.3.3, 2cone_int.in.
strict_signs is a vector with d components in {−1,0,1}. It is the ”strict” counterpart to

signs. An entry 1 in component i represents the inequality xi > 0, an entry −1 the
opposite inequality, whereas 0 imposes no condition on xi. 2.10.2, Condorcet_one.in
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3.5.2. Lattices

inhom_equations is a matrix with d +1 columns. We consider equations

ξ1x1 + · · ·+ξdxd = η , ξi,η ∈ Z,

rewritten as
ξ1x1 + · · ·+ξdxd +(−η) = 0

and then represented by the input vectors

(ξ1, . . . ,ξd,−η).

See 2.7NumSemi.in.
inhom_congruences We consider a matrix with d+2 columns. Each the row (ξ1, . . . ,ξd,−η ,c)

represents a congruence

ξ1z1 + · · ·+ξdzd ≡ η mod c, ξi,η ,c ∈ Z,

for the elements (z1, . . . ,zd) ∈ Zd . Section 2.12, InhomCongSigns.in.

3.6. Tabular constraints

constraints allows the input of equations, inequalities and congruences in a format that is
close to standard notation. As for matrix types the keyword constraints is followed
by the number of constraints. The syntax of tabular constraints has been described in
Section 3.2.1. If (ξ1, . . . ,ξd) is the vector on the left hand side and η the integer on the
right hand side, then the constraint defines the set of vectors (x1, . . . ,xd) such that the
relation

ξ1x1 + . . .ξdxd rel η

is satisfied, where rel can take the values =,≤,≥,<,> with the represented by input
strings =,<=,>=,<,>, respectively.
The input string ~ represents a congruence ≡ and requires the additional input of a
modulus. It represents the congruence

ξ1x1 + . . .ξdxd ≡ η (mod c).

Sections 2.3.3, 2cone_int.in, 2.6.1, 3x3magiceven.in, 2.9, InhomIneq.in.

A right hand side 6= 0 makes the input inhomogeneous, as well as the relations < and >. Strict
inequalities are always understood as conditions for integers. So

ξ1x1 + · · ·+ξdxd < η

is interpreted as
ξ1x1 + . . .ξdxd ≤ η−1,
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3.6.1. Forced homogeneity

It is often more natural to write constraints in inhomogeneous form, even when one wants the
computation to be homogeneous. The type constraints does not allow this. Therefore we
have introduced

hom_constraints for the input of equations, non-strict inequalities and congruences in the
same format as constraints, except that these constraints are meant to be for a homo-
geneous computation. It is clear that the left hand side has only d−1 entries now. See
Section 2.5.1, poly_hom_const.in.

3.7. Symbolic constraints

The input syntax is

constraints <n> symbolic where <n> is the number of constraints in symbolic form that
follow.

The constraints have the form described in Section 3.1.7. Note that every symbolic constraint
(including the last) must be terminated by a semicolon.

Swew 2.7, NumSemi.in, 2.12, InhomCong.in.

The interpretation of homogeneity follows the same rules as for tabular constraints. The vari-
ant hom_constraints is allowed and works as for tabular constraints.

3.8. Relations

Relations do not select a sublattice of Zd or a subcone of Rd , but define a monoid as a quotient
of Zd

+ modulo a system of congruences (in the semigroup sense!).

The rows of the input matrix of this type are interpreted as generators of a subgroup U ⊂ Zd ,
and Normaliz computes an affine monoid and its normalization as explained in Section A.5.

Set G = Zd/U and L = G/torsion(G). Then the ambient lattice is A= Zr, r = rankL, and the
efficient lattice is L, realized as a sublattice of A. Normaliz computes the image of Zd

+ in L
and its normalization.

lattice_ideal is a matrix with d columns containing the generators of the subgroup U .
Section 2.16, lattice_ideal.in.

The type lattice_ideal cannot be combined with any other input type (except grading)—
such a combination would not make sense. (See Section 3.10.1 for the use of a grading in this
case.)

3.9. Unit vectors

A grading or a dehomogenization is often given by a unit vector:
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unit_vector <n> represents the nth unit vector in Rd where n is the number given by <n>.

This shortcut cannot be used as a row of a matrix. It can be used whenever a single vector is
asked for, namely after grading, dehomogenization, signs and strict_signs. See Section
2.5, rational.in

3.10. Grading

This type is accessory. A Z-valued grading can be specified in two ways:

(1) explicitly by including a grading in the input, or
(2) implicitly. In this case Normaliz checks whether the extreme integral generators of the

monoid lie in an (affine) hyperplane A given by an equation λ (x) = 1 with a Z-linear
form λ . If so, then λ is used as the grading.
Implicit gradings are only possible for homogeneous computations.

Explicit definition of a grading:

grading is a vector of length d representing the linear form that gives the grading. Section
2.5, rational.in.

total_degree represents a vector of length d with all entries equal to 1. Section 2.10,
Condorcet.in.

Before Normaliz can apply the degree, it must be restricted to the effective lattice E. Even if
the entries of the grading vector are coprime, it often happens that all degrees of vectors in E
are divisible by a greatest common divisor g > 1. Then g is extracted from the degrees, and it
will appear as denominator in the output file.

Normaliz checks whether all generators of the (recession) monoid have positive degree (after
passage to the quotient modulo the unit group in the nonpointed case). Vertices of polyhedra
may have degrees ≤ 0.

3.10.1. lattice_ideal

In this case the unit vectors correspond to generators of the monoid. Therefore the degrees
assigned to them must be positive. Moreover, the vectors in the input represent binomial
relations, and these must be homogeneous. In other words, both monomials in a binomial
must have the same degree. This amounts to the condition that the input vectors have degree
0. Normaliz checks this condition.

3.11. Dehomogenization

Like grading this is an accessory type.

Inhomogeneous input for objects in Rd is homogenized by an additional coordinate and then
computed in Rd+1, but with the additional condition xd+1 ≥ 0, and then dehomogenizing all
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results: the substitution xd+1 = 1 acts as the dehomogenization, and the inhomogeneous input
types implicitly choose this dehomogenization.

Like the grading, one can define the dehomogenization explicitly:

dehomogenization is a vector of length d representing the linear form δ .

The dehomogenization can be any linear form δ satisfying the condition δ (x)≥ 0 on the cone
that is truncated. (In combination with constraints, the condition δ (x) ≥ 0 is automatically
satisfied since δ is added to the constraints.)

The input type dehomogenization can only be combined with homogeneous input types, but
makes the computation inhomogeneous, resulting in inhomogeneous output. The polyhedron
computed is the intersection of the cone C (and the lattice E) with the hyperplane given by
δ (x) = 1, and the recession cone is C∩{x : δ (x) = 0}.
A potential application is the adaptation of other input formats to Normaliz. The output must
then be interpreted accordingly.

Section 6.7, dehomogenization.in.

3.12. Pointedness

Since version 3.1 Normaliz can also computed nonpointed cones and polyhedra without ver-
tices.

3.13. The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

4. Computation goals and algorithmic variants

The library libnormaliz contains a class ConeProperties that collects computation goals,
algorithmic variants and additional data that are used to control the work flow in libnormaliz

as well as the communication with other programs. The latter are not important for the Nor-
maliz user, but are listed as a reference for libnormaliz. See Appendix D for a description of
libnormaliz.

All computation goals and algorithmic variants can be communicated to Normaliz in two
ways:

(1) in the input file, for example HilbertBasis,
(2) via a verbatim command line option, for example --HilbertBasis.

For the most important choices there are single letter command line options, for example -N

for HilbertBasis. The single letter options ensure backward compatibility to Normaliz 2. In
jNormaliz they are also accessible via their full names.
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Some computation goals apply only to homogeneous computations, and some others make
sense only for inhomogeneous computations.

Some single letter command line options combine two or more computation goals, and some
algorithmic variants imply computation goals.

4.1. Default choices and basic rules

If several computation goals are set, all of them are pursued. In particular, computation goals
in the input file and on the command line are accumulated. But

--ignore, -i on the command line switches off the computation goals and algorithmic vari-
ants set in the input file.

The default computation goal is set if neither the input file nor command line contains a com-
putation goal or an algorithmic variant that implies a computation goal. It is

HilbertBasis + HilbertSeries + ClassGroup.

If set explicitly in the input file or on the command line the following adds these computation
goals:

DefaultMode

It is possible to set DefaultMode explicitly in addition to other computation goals. If it is set,
implicitly or explicitly, Normaliz will not complain about unreachable computation goals.

Normaliz collects all computation goals and algorithmic variants set in the input file and on
the command line.

4.2. The choice of algorithmic variants

For its main computation goals Normaliz has algorithmic variants. It tries to choose the variant
that seems best for the given input data (except symmetrization). This automatic choice may
however a bad one. Therefore the user can completely control which algorithmic variant is
used.

4.2.1. Primal vs. dual

For the computation of Hilbert bases Normaliz has two algorithms, the primal algorithm that
is based on triangulatioons, and the dual algorithm that is of type “pair completion”. We have
seen both in Section 2. Roughly speaking, the primal algorithm is the first choice for generator
input, and the dual algorithm is usually better for constraint input. The choice also applies to
the computation of degree 1 elements. However, for them there exists a third variant. See
Section 4.2.2. The conditions under which the dual algorithm is chosen are specified there.

The choice of the algorithm can be fixed or blocked:
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DualMode, -d activates the dual algorithm for the computation of the Hilbert basis and de-
gree 1 elements. Includes HilbertBasis, unless Deg1Elements is set. It overrules
IsIntegrallyClosed.

PrimalMode, -P blocks the use of the dual algorithm.

The automatic choice can of course fail. See Section 6.4 for an example for which it is bad.

4.2.2. Lattice points by approximation

This is often the best choice for the computation of lattice points in a polytope. The polytope
can be defined as the cross-section of a pointed cone with the hyperplane of degree 1 points
(homogeneous input) or as a polyhedron (inhomogeneous input). The basic idea to escape
the arithmetical complexity of rational vertices with large denominators by approximating a
rational polytope by one with integral vertices. See Section 6.1 for further discussion and
examples, and also for the conditions under which Approximate is chosen automatically by
Normaliz.

You can force approximation or block it:

Approximate, -r activates the approximation algorithm for the computation of degree 1 ele-
ments. It implies Deg1Elements,

NoApproximation blocks approximation.

Approximation is also blocked by DualMode, but not by PrimalMode.

4.2.3. Bottom decomposition

Bottom decomposition is a way to produce an optimal triangulation for a given set of genera-
tors. It is discussed in Section 6.2. The criterion for its automatic choice is explained there. It
can be forced or blocked:

BottomDecomposition, -b tells Normaliz to use bottom decomposition in the primal algo-
rithm.

NoBottomDec, -o forbids Normaliz to use bottom decomposition in the primal algorithm,
even if it would otherwise be chosen because of large roughness (see Section 6.2).

An option to be mentioned in this context is

KeepOrder, -k forbids Normaliz to reorder the generators of the efficient cone C. Only
useful if original monoid generators are defined. Also blocks BottomDecomposition.

KeepOrder is only allowed if OriginalMonoidGenerators are drined. It is rarely a good idea
to set KeepOrder (try it). It is primarily used internally when data must be computed in an
auxiliary cone.
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4.2.4. Symmetrization

In rare cases Normaliz can use symmetrization in the computation of multiplicities or Hilbert
series. If applicable, this is a very strong tool. We have mentioned it in Section 2.10 and will
discuss it in Section 6.5. It will be chosen automatically, but can also be forced or blocked:

Symmetrize, -Y lets Normaliz compute the multiplicity and/or the Hilbert series via sym-
metrization (or just compute the symmetrized cone).

NoSymmetrization blocks symmetrization.

4.2.5. Subdivision of simplicial cones

Under certain conditions Normaliz tries to speed up computations by subdividing large simpli-
cial cones. This requires enlarging the set of generators and can lead to a nested triangulation
(see Sections 6.3 and 6.9.1). The subdivision can be blocked by

NoSubdivision

4.3. Computation goals

The computation goal Sublattice does not imply any other computation goal. All other com-
putation goals include Sublattice and SupportHyperplanes, apart from certain computation
goals based on the dual algorithm; see Section 4.6.

4.3.1. Lattice data

Sublattice, -S (upper case S) asks Normaliz to compute the coordinate transformation to
and from the efficient sublattice.

4.3.2. Support hyperplanes and extreme rays

SupportHyperplanes, -s triggers the computation of support hyperplanes and extreme rays.

Normaliz tries to find a grading.

4.3.3. Hilbert basis and related data

HilbertBasis, -N triggers the computation of the Hilbert basis. In inhomogeneous compu-
tations it asks for the Hilbert basis of the recession monoid and the module generators.

Deg1Elements, -1 restricts the computation to the degree 1 elements of the Hilbert basis.
Requires the presence of a grading. Forbidden in inhomogeneous computations.

ModuleGeneratorsOverOriginalMonoid, -M computes a minimal system of generators of
the integral closure over the original monoid (see Section 6.11). Requires the existence
of original monoid generators.
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The boolean valued computation goal IsIntegrallyClosed is also related to the Hilbert basis;
see Section 4.3.10.

4.3.4. Enumerative data

The computation goals in this section require a grading. They include SupportHyperplanes.

HilbertSeries,-q triggers the computation of the Hilbert series.
Multiplicity, -v restricts the computation to the multiplicity. ]
HSOP lets Normaliz compute the degrees in a homogeneous system of parameters and the

induced representation of the Hilbert series.

4.3.5. Combined computation goals

Can only be set by single letter command line options:

-n HilbertBasis + Multiplicity

-h HilbertBasis + HilbertSeries

-p Deg1Elements + HilbertSeries

4.3.6. The class group

ClassGroup, -C is self explanatory, includes SupportHyperplanes. Not allowed in inhomo-
geneous computations.

4.3.7. Integer hull

IntegerHull, -H computes the integer hull of a polyhedron. Implies the computation of the
lattice points in it.

More precisely: in homogeneous computations it implies Deg1Elements, in inhomogeneous
computations it implies HilbertBasis. See Section 2.15.

4.3.8. Triangulation and Stanley decomposition

Triangulation, -T makes Normaliz compute, store and export the full triangulation.
ConeDecomposition, -D Normaliz computes a disjoint decomposition of the cone by semiopen

simplicial cones. Implies Triangulation.
TriangulationSize, -t makes Normaliz count the simplicial cones in the full triangulation.
TriangulationDetSum makes Normaliz additionally sum the absolute values of their deter-

minants.
StanleyDec, -y makes Normaliz compute, store and export the Stanley decomposition. Only

allowed in homogeneous computations.

The triangulation and the Stanley decomposition are treated separately since they can become
very large and may exhaust memory if they must be stored for output.
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4.3.9. Weighted Ehrhart series and integrals

-E, WeightedEhrhartSeries makes Normaliz compute a generalized Ehrhart series.
-L, VirtualMultiplicity makes Normaliz compute the virtual multiplicity of a weighted

Ehrhart series.
-I, Integral makes Normaliz compute an integral.

These computation goals require a homogeneous computation.

Don’t confuse these options with symmetrization. The latter symmetrizes (if possible) the
given data and uses -E or -L internally on the symmetrized object. The options -E,-I,L ask
for the input of a polynomial. See Section 3.1.8.

4.3.10. Boolean valued computation goals

They tell Normaliz to find out the answers to the questions they ask. Two of them are more
important than the others since they may infuence the course of the computations:

IsIntegrallyClosed, -w : is the original monoid integrally closed? Normaliz stops the
Hilbert basis computation as soon as it can decide whether the original monoid contains
the Hilbert basis (see Section 2.11.1).

IsPointed : is the efficient cone C pointed? This computation goal is sometimes useful to
give Normaliz a hint that a nonpointed cone is to be expected. See Section 6.8.3.

The remaining ones:

IsDeg1ExtremeRays : do the extreme rays have degree 1?
IsDeg1HilbertBasis : do the Hilbert basis elements have degree 1?
IsReesPrimary : for the input type rees_algebra, is the monomial ideal primary to the irrel-

evant maximal ideal?

The last three computation goals are not really useful for Normaliz since they will be answered
automatically. Note that they may trigger extensive computations.

4.4. Integer type

There is no need to worry about the integer type chosen by Normaliz. All preparatory com-
putations use infinite precision. The main computation is then tried with 64 bit integers. If it
fails, it will be restarted with infinite precision.

The amount of computations done with infinite precision is usually very small, but the trans-
formation of the computation results from 64 bit integers to infinite precision may take some
time. If you need the highest possible speed, you can suppress infinite precision completely
by

LongLong

However, in this case Normaliz cannot restart a failed computation.

On the other hand, the 64 bit attempt can be bypassed by
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BigInt, -B

Note that Normaliz tries to avoid overflows by intermediate results (even if LongLong is set).
If such overflow should happen, the computation is repeated locally with infinite precision.
(The number of such GMP transitions is shown in the terminal output.) If a final result is too
large, Normaliz must restart the computation globally.

LongLong is not a cone property.

4.5. Control of computations and communication with interfaces

In addition to the computation goals in Section 4.3, the following elements of ConeProperties
control the work flow in libnormaliz and can be used by programs calling Normaliz to ensure
the availability of the data that are controlled by them.

Generators controls the generators of the efficient cone.
OriginalMonoidGenerators controls the generators of the original monoid.
ModuleGenerators controls the module generators in inhomogeneous computation.
ExtremeRays controls the extreme rays.
VerticesOfPolyhedron controls the vertices of the polyhedron in the inhomogeneous case.
MaximalSubspace controls the maximal linear subspace of the (homogenized) cone.
EmbeddingDim controls the embedding dimension.
Rank controls the rank.
RecessionRank controls the rank of the recession monoid in inhomogeneous computations.
AffineDim controls the affine dimension of the polyhedron in inhomogeneous computations.
ModuleRank in inhomogeneous computations it controls the rank of the module of lattice

points in the polyhedron as a module over the recession monoid.
ExcludedFaces controls the excluded faces.
InclusionExclusionData controls data derived from the excluded faces.
Grading controls the grading.
GradingDenom controls its denominator.
Dehomogenization controls the dehomogenization.
ReesPrimaryMultiplicity controls the multiplicity of a monomial ideal, provided it is pri-

mary to the maximal ideal generated by the indeterminates. Used only with the input
type rees_algebra.

WitnessNotIntegrallyClosed controls witness against integral closedness.
Equations controls the equations.
Congruences controls the congruences.
ExternalIndex controls the external index.
InternalIndex controls the internal index.
UnitGroupIndex controls the unit group index.
IsInhomogeneous controls the inhomogeneous case..
HilbertQuasiPolynomial controls the Hilbert quasipolynomial.
WeightedEhrhartQuasiPolynomial controls the weighted Ehrhart quasipolynomial.
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IsTriangulationNested controls the indicator of this property.
IsTriangulationPartial similar.

4.6. Rational and integer solutions in the inhomogeneous case

The integer solutions of a homogeneous diophantine system generate the rational solutions as
well: every rational solution has a multiple that is an integer solution. Therefore the rational
solutions do not need an extra computation. If you prefer geometric language: a rational cone
is generated by its lattice points.

This is no longer true in the inhomogeneous case where the computation of the rational solu-
tions is an extra task for Normaliz. This extra step is inevitable for the primal algorithm, but
not for the dual algorithm. In general, the computation of the rational solutions is much faster
than the computation of the integral solutions, but this by no means always the case.

Therefore we have decoupled the two computations if the dual algorithm is applied to inho-
mogeneous systems or to the computation of degree 1 points in the homogeneous case. The
combinations

DualMode HilbertBasis, -dN

DualMode Deg1Elements, -d1

DualMode ModuleGenerators

do not imply the computation goal SupportHyperplanes (and not even Sublattice) which
would trigger the computation of the rational solutions (geometrically: the vertices of the
polyhedron). If you want to compute them, you must add one of

SupportHyperplanes, -s

ExtremeRays

VerticesOfPolyhedron

The last choice is only possible in the inhomogeneous case. Another possibility in the inho-
mogeneous case is is to use simply DualMode.

5. Running Normaliz

The standard form for calling Normaliz is

normaliz [options] <project>

where <project> is the name of the project, and the corresponding input file is <project>.in.
Note that normaliz may require to be prefixed by a path name, and the same applies to
<project>. A typical example on a Linux or Mac system:

./normaliz --verbose -x=5 ../example/big

that for MS Windows must be converted to

.\normaliz --verbose -x=5 example\big
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Normaliz uses the standard conventions for calls from the command line:

(1) the order of the arguments on the command line is arbitrary.
(2) Single letter options are prefixed by the character - and can be grouped into one string.
(3) Verbatim options are prefixed by the characters --.

The options for computation goals and algorithmic variants have been described in Section
4. In this section the remaining options for the control of execution and output are discussed,
together with some basic rules on the use of the options.

5.1. Basic rules

The options for computation goals and algorithms variants have been explained in Section
4. The options that control the execution and the amount of output will be explained in the
following. Basic rules for the use of options:

1. If no <project> is given, the program will terminate.

2. The option -x differs from the other ones: <T> in -x=<T> represents a positive number
assigned to -x; see Section 5.3.

3. Similarly the option --OutputDir=<outdir> sets the output directory; see 5.5.

4. Normaliz will look for <project>.in as input file.

If you inadvertently typed rafa2416.in as the project name, then Normaliz will first
look for rafa2416.in.in as the input file. If this file doesn’t exist, rafa2416.in will be
loaded.

5. The options can be given in arbitrary order. All options, including those in the input
file, are accumulated, and syntactically there is no mutual exclusion. However, some
options may block others during the computation. For example, KeepOrder blocks
BottomDecomposition.

6. If Normaliz cannot perform a computation explicitly asked for by the user, it will termi-
nate. Typically this happens if no grading is given although it is necessary.

7. In the options include DefaultMode, Normaliz does not complain about missing data
(anymore). It will simply omit those computations that are impossible.

8. If a certain type of computation is not asked for explicitly, but can painlessly be produced
as a side effect, Normaliz will compute it. For example, as soon as a grading is present
and the Hilbert basis is computed, the degree 1 elements of the Hilbert basis are selected
from it.

5.2. Info about Normaliz

--help, -? displays a help screen listing the Normaliz options.
--version displays information about the Normaliz executable.
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5.3. Control of execution

The options that control the execution are:

--verbose, -c activates the verbose (“console”) behavior of Normaliz in which Normaliz
writes additional information about its current activities to the standard output.

-x=<T> Here <T> stands for a positive integer limiting the number of threads that Normaliz is
allowed access on your system. The default value is set by the operating system. If you
want to run Normaliz in a strictly serial mode, choose -x=1.

The number of threads can also be controlled by the environment variable OMP_NUM_THREADS.
See Section 8.1 for further discussion.

5.4. Interruption

During a computation normaliz can be interrupted by pressing Ctrl-C on the keyboard. If this
happens, Normaliz will stop the current computation and write the already computed data to
the output file(s).

At present, the Normaliz interrupt control has no effect during SCIP computations.

If Crtl-C is pressed during the output phase, Normaliz is stopped immediately.

5.5. Control of output files

In the default setting Normaliz writes only the output file <project>.out (and the files pro-
duced by Triangulation and StanleyDec). The amount of output files can be increased as
follows:

--files, -f Normaliz writes the additional output files with suffixes gen, cst, and inv, pro-
vided the data of these files have been computed.

--all-files, -a includes Files, Normaliz writes all available output files (except typ, the
triangulation or the Stanley decomposition, unless these have been requested).

--<suffix> chooses the output file with suffix <suffix>.

For the list of potential output files, their suffixes and their interpretation see Section 7. There
may be several options --<suffix>.

If the computation goal IntegerHull is set, Normaliz computes a second cone and lattice.
The output is contained in <project>.IntHull.out. The options for the output of <project>
are applied to <project>.IntHull as well. There is no way to control the output of the two
computations individually.

Sometimes one wants the output to be written to another directory. The output directory can
be set by

--OutputDir=<outdir> . The path <outdir< is an absolute path or a path relative to the
current directory (which is not necessarily the directory of <project>.in.)
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Note that all output files will be written to the chosen directory. It must be created before
Normaliz is started.

5.6. Overriding the options in the input file

Since Normaliz accumulates options, one cannot get rid of settings in the input file by com-
mand line options unless one uses

--ignore, -i This option disables all settings in the input file.

6. More examples

6.1. Lattice points by approximation

In order to find the lattice points in a polytope P, old versions of Normaliz created the same
vectors that are needed for the Hilbert basis computation, but used that no reduction is nec-
essary to find the degree 1 points. They are automatically part of the Hilbert basis. While
this observation speeded up the computations considerably, the number of vectors to be cre-
ated could simply make the computation impossible. This was especially true for rational
polytopes whose vertices have large denominators.

Normaliz 3.2.0 takes the following approach: simplicial subcones S with rational vertices are
approximated by integral polytopes, and only the lattice points in S are kept. This is done
automatically. Since version 2.11 the user can also choose a global approximation of the input
polytope P by the option Approximate, and this is often a very good choice.

Now pproximation is chosen automatically by Normaliz if the polytope is not integral and has
at most

100.

The reason for this limitation is that each rational vertex must be replaced dby several integral
ones, and this increase can make the computation of the approximating polytope quite difficult.
As mentioned in Section 6.1, Approximate, -r forces approximation (regardless of the bound
5e) and NoApproximation blocks it.

Our demonstration example is max_polytope_cand with the input file

amb_space 5

inequalities 11
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-3 -3 -10 14 88

26 -3 19 14 361

-4 25 6 -49 133

2 -3 1 5 17

-2 -3 -7 11 61

-6 23 9 -30 233

-2 7 3 -9 81

-8 17 12 -65 183

8 -15 4 23 65

-8 -13 -28 45 241

-8 27 12 -35 321

grading

unit_vector 5

Deg1Elements

This is not a random input file; it has come up in connection with the paper “Quantum jumps
of normal polytopes” by W. Bruns, J. Gubeladze and M. Michałek, Discrete Comput. Geom.
56 (2016), no. 1, 181–215.

Despite of the large number of lattice points, the computation is extremely fast. If you insist
in NoApproximation, it will take considerably longer, but will not overstretch your patience.
Note that Normaliz passes to GMP integers for some computations, which becomes necessary
because of the huge determinants of the simplicial cones (without approximation). Actually,
approximation is used despite NoApproximation, namely ‘locally” for each simplicuial cone
in the triangulation. (This cannot be swiched off.)

The third choice using the dual algorithm is still o.k. though it takes the most time in this case.
In other cases it may very well be the fastest.

In the inhomogeneous case, approximation can be used if the polyhedron is actually a polytope
and HilbertBasis (or just the default mode) is set. An example (pedro2.in, suggested by
Paedro Garcia-Sanchez):

amb_space 5

constraints 1

1001 1211 1421 1631 2841 = 39249

6.2. The bottom decomposition

The triangulation size and the determinant sum of the triangulation are critical size parameters
in Normaliz computations. Normaliz always tries to order the generators in such a way that
the determinant sum is close to the minimum, and on the whole this works out well. The use
of the bottom decomposition by BottomDecomposition, -b enables Normaliz to compute a
triangulation with the optimal determinant sum for the given set of generators, as we will
explain in the following.

The determinant sum is independent of the order of the generators of the cone C if they lie in
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a hyperplane H. Then the determinant sum is exactly the normalized volume of the polytope
spanned by 0 and C∩H. The triangulation itself depends on the order, but the determinant
sum is constant.

H

C

This observation helps to find a triangulation with minimal determinant sum in the general
case. We look at the bottom (the union of the compact faces) of the polyhedron generated by
x1, . . . ,xn as vertices and C as recession cone, and take the volume underneath the bottom:

C

With the option BottomDecomposition, -b, Normaliz computes a triangulation that respects
the bottom facets. This yields the optimal determinant sum for the given generators. If one can
compute the Hilbert basis by the dual algorithm, it can be used as input, and then one obtains
the absolute bottom of the cone, namely the compact facets of the convex hull of all nonzero
lattice points.

Normaliz does not always use the bottom decomposition by default since its computation
requires some time and administrative overhead. However, as soon as the input “profile” is
considered to be “rough” it is invoked. The measure of roughness is the ratio between the
maximum degree (or L1 norm without a grading) and the minimum. A ratio≥ 10 activates the
bottom decomposition.

If you have the impression that the bottom decomposition slows down your computation,
you can suppress it by NoBottomDec, -o. (KeepOrder, -k not only suppresses the bottom
decomposition, but also any reordering of the generators.)

The bottom decomposition is part of the subdivision of large simplicial cones discussed in the
next section.

The example StrictBorda.in belongs to social choice theory loke Condorcet.in (see Sec-
tion 2.10), PluralityVsCutoff.in and CondEffPlur.in. The last two profit enormously from
symmetrization (see Srction 6.5), but StrictBorda.in does not. Therefore we must compute
the Hilbert series (or at least the multi0licity) for a monoid in dimension 24 whose cone has
6363 extreme rays. It demonstartes the substantial gain that can be treached by bottom de-
composition. Since the roughness is large enough, Normaliz chooses bottom decomposition
automatically, unless we block it.
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algorithm triangulation size determinant sum
bottom decomposition 30,399,162,846 75,933,588,203

standard order of extreme rays, -o 119,787,935,829 401,249,361,966

6.3. Subdivision of large simplicial cones

Especially in computations with rational polytopes one encounters very large determinants that
can keep the Normaliz primal algorithm from terminating in reasonable time. As an example
we take hickerson-18.in from the LattE distribution [4]. It is simplicial and the complexity
is totally determined by the large determinant ≈ 4.17×1014 (computed with -v).

If we are just interested in the degree 1 points, Normaliz uses the approximation method of
Section 6.1 and finds 44 degree 1 points very quickly. If we use these points together with
the extreme rays of the simplex, then the determinant sum decreases to ≈ 1.3×1012, and the
computation of the Hilbert basis and the Hilbert series is in reach. But it is better to pursue the
idea of subdividing large simplicial cones systematically. Normaliz employs two methods:

(1) computation of subdivision points by the IP solver SCIP,
(2) computation of candidate subdivision points by approximation of the given simplicial

cone by an overcone that is generated by vectors of “low denominator”.

Normaliz tries to subdivide a simplicial cone if it has determinant ≥ 108 or 107 if the Hilbert
basis is computed. Both methods are used recursively via stellar subdivision until simplicial
cones with determinant < 106 have been reached or no further improvement is possible. Fur-
thermore, if some big simplices are still remaining, method (2) is applied again in both cases
with a higher approximation level. All subdivision points are then collected, and the start sim-
plicial cone is subdivided with bottom decomposition, which in general leads to substantial
further improvement.

The use of SCIP requires a Normaliz executable that is built with SCIP see Section 2.12com-
pile). Without SCIP only the approximation method is used. However, it can happen that
SCIP fails because the required precision cannot be reached by floating point calculations. In
this case the approximation method will be tried as well.

Recommendation: If you are applying Normaliz to arithmetically complicated examples, use
Normaliz with SCIP.

The following table contains some performance data for subdivisions based on SCIP (paral-
lelization with 20 threads).

hickerson-16 hickerson-18 knapsack_11_60

simplex volume 9.83×107 4.17×1014 2.8×1014

volume under bottom 8.10×105 3.86×107 2.02×107

volume used 3.93×106 5.47×107 2.39×107

runtime without subdivision 2 s >12 d >8 d
runtime with subdivision 0.5 s 46 s 5.1 s
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Performance data for approximation:

hickerson-16 hickerson-18 knapsack_11_60

volume used 3.9×106 9.1×107 2.3×109

runtime with subdivision 0.7 s 58 s 2 m 36 s

A good nonsimplicial example showing the subdivision at work is hickerson_18plus1.in.

Note: After subdivision the decomposition of the cone may no longer be a triangulation in the
strict sense, but a decomposition that we call a nested triangulation; see 6.9.1. If the creation
of a nested triangulation must be blocked, one uses the option NoSubdivision. Inevitably it
blocks the subdivision of large simplicial cones.

Remark The bounds mentioned above work well up to dimension ≈ 10. In larger dimension
they are too low because the probability of finding a subdivision point becomes too small.

6.4. Primal vs. dual – division of labor

As already mentioned several times, Normaliz has two main algorithms for the computation of
Hilbert bases and degree 1 points, the primal algorithm and the dual algorithm. It is in general
very hard to decide beforehand which of the two is better for a specific example. Nevertheless
Normaliz ties to guess, unless PrimalMode, -P or DualMode, -d is explicitly chosen by the
user. In first approximation one can day that the dual algorithm is chosen if the computation is
based on constraints and the number of inequalities is neither too small nor too large. Normaliz
chooses the dual algorithm if at the start of the Hilbert basis computation the cone is defined
by s inequalities such that

r+
50
r
≤ s≤ 2e

where r is the rank of the monoid to be computed and e is the dimension of the space in
which the data are embedded. These conditions ate typically fulfilled for diophantine systems
of equations whose nonnegative solutions are asked for. In the case of very few or many
hyperplanes Normaliz prefers the primal algorithm. While this combinatorial condition is the
only criterion for Normaliz, it depends also on the arithmetic of the example what algorithm
is better. At present Normaliz makes no attempt to measure it in some way.

When both Hilbert basis and Hilbert series are to be computed, the best solution can be the
combination of both algorithms. We recommend 2equations.in as a demonstration example
which combines the algorithmic variant DualMode and the computation goal HilbertSeries:

amb_space 9

equations 2

1 6 -7 -18 25 -36 6 8 -9

7 -13 15 6 -9 -8 11 12 -2

total_degree

DualMode

HilbertSeries
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As you will see, the subdivision of large simplicial cones is very useful for such computations.

Compare 2equations.in and 2equations_default.in for an impression on the relation be-
tween the algorithms.

6.5. Symmetrization

Under certain conditions one can count lattice points in a cone C by mapping C to a cone C′

of lower dimension and then counting each lattice point y in C′ with the number of its lattice
preimages. This approach works well if the number of preimages is given by a polynomial
in the coordinates of y. Since C′ has lower dimension, one can hope that its combinatorial
structure is much simpoler that that of C. One must of course pay a price: instead of counting
each lattice point with the weight 1, one must count it with a polynomial weight. This amounts
to a computation of a weighted Ehrhart series that we will discuss in Section 6.6. Similarly
multiplicity can be computed as the virtual multiplicity of a polynomial after projection.

The availability of this approach depends on symmetries in the coordinates of C, and therefore
we call it symmetrization. Normaliz tries symmetrization under the following condition: C is
given by constraints (inequalities, equations, congruences, excluded faces) and the inequalities
contain the sign conditions xi ≥ 0 for all coordinates xi of C. (Coordinate hyperplanes may be
among the excluded faces.) Then Normaliz groups coordinates that appear in all constraints
and the grading (!) with the same coefficients, and, roughly speaking, replaces them by their
sum. The number of preimages that one must count for the vector y of sums is then a product
of binomial coefficients – a polynomial as desired. More precisely, if y j, j = 1, . . . ,m, is the
sum of u j variables xi then

f (y) =
(

u1 + y1−1
u1−1

)
· · ·
(

um + ym−1
um−1

)
.

is the number of preimages of (y1, . . . ,ym). This approach to Hilbert series has been suggested
by A. Schürmann [16].

As an example we look again at the input for the Condorcet paradox:

amb_space 24

inequalities 3

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nonnegative

total_degree

Multiplicity

The grading is completely symmetric, and it is immediately clear that the input is symmetric
in the first 6 coordinates. But also the column of three entries −1 appears 6 times, and there
are 6 more groups of 2 coordinates each (one group for each ±1 pattern). With the suitable

78



labeling, the number of preimages of(y1, . . . ,y8) is given by

f (y) =
(

y1 +5
5

)
(y2 +1)(y3 +1)(y4 +1)(y5 +1)(y6 +1)(y7 +1)

(
y8 +5

5

)
.

Normaliz finds the groups of variables that appear with the same sign pattern, creates the data
for the weighted Ehrhart series, and interprets it as the Hilbert series of the monoid defined by
the input data.

However, there is a restriction. Since the polynomial arithmetic has its own complexity and
Normaliz must do it in GMP integers, it makes no sense to apply symmetrization if the dimen-
sion does not drop by a reasonable amount. Therefore we require that

dimC′ ≤ 2
3

dimC).

If called with the options -q or -v Normaliz will try symmetrization. If the inequality for
dimC′ is not satisfied, it will simply compute the Hilbert series or the multiplicity without
symmetrization. (In default mode it of course tries symmetrization for the Hilbert series.)

Whenever Normaliz has used symmetrization, it writes the file <project>.symm.out that con-
tains the data of the symmetrized object. In it you find the multiplicity of <project>.out as
virtual multiplicity and the Hilbert series as weighted Ehrhart series.

If you use the option Symmetrize, then the behavior depends on the other options:

(1) If neither the HilbertSeries or Multiplicity is to be computed, Normaliz writes only
the output file <project>.symm.out computed with SupportHyperplanes.

(2) If one of these goals is to be computed, Normaliz will do the symmetrization, regardless
of the dimension inequality above.

By doing step (1) first, the user gets useful information of what to expect by symmetrization.
In a second run, one can add HilbertSeries or Multiplicity if (1) was satisfactory.

The Condorcet example is too small in order to demonstrate the power of symmetrization. A
suitable example is PluralityVsCutoff.in:

winfried@ubuntu:~/Dropbox/git_normaliz/source$ time ./normaliz -c ../example/PluralityVsCutoff

\.....|

Normaliz 3.3.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

March 2017 \.|

\|

************************************************************
Command line: -c ../example/PluralityVsCutoff

Compute: DefaultMode

Embedding dimension of symmetrized cone = 6

...

------------------------------------------------------------

transforming data... done.
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real 0m2.655s

user 0m5.328s

sys 0m0.080s

The Hilbert series is computable without symmetrization, but you better make sure that there
is no power failure for the next week if you try that. (The time above includes the Hilbert basis
computed automatically in dual mode).

Another good example included in the distribution is CondEffPlur.in, but it takes some hours
with symmetrization (instead of days without). For it, the dimension drops only from 24 to
13.

Symmetrization is a special type of computations with a polynomial weight, and therefore
requires Normaliz to be built with CoCoALib.

6.6. Computations with a polynmial weight

For such graded monoids M, which arises as the intersection M = C∩L of a rational coneC
and a lattice L, Normaliz computes the volume of the rational polytope

P = {x ∈ R+M : degx = 1},

called the multiplicity of M (for the given grading), the Hilbert series of M, and the quasipoly-
nomial representing the Hilbert function. This Hilbert series of M is also called the Ehrhart
series of P (with respect to L), and for the generalization introduced in this section we speak
of Ehrhart series and functions.

The computations of these data can be understood as integrals of the constant polynomial
f = 1, namely with respect to the counting measure defined by L for the Ehrhart function,
and with respect to the (suitably normed) Lebesgue measure for the volume. Normaliz gener-
alizes these computations to arbitrary polynomials f in n variables with rational coefficients.
(Mathematically, there is no need to restrict oneself to rational coefficients for f .)

More precisely, set
E( f ,k) = ∑

x∈M,degx=k
f (x),

and call E( f ,_) the weighted Ehrhart function for f . (With f = 1 we simply count lattice
points.) The weighted Ehrhart series is the ordinary generating function

E f (t) =
∞

∑
k=0

E( f ,k)tk.

It turns out that E f (t) is the power series expansion of a rational function at the origin, and can
always be written in the form

E f (t) =
Q(t)

(1− t`)totdeg f+rankM , Q(t) ∈Q[t], degQ < totdeg f + rankM.
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Here totdeg f is the total degree of the polynomial f , and ` is the least common multiple
of the degrees of the extreme integral generators of M. See [11] for an elementary account,
references and the algorithm used by Normaliz.

At present, weighted Ehrhart series can only be computed with homogeneous data. Note that
excluded_faces is a homogeneous input type. For them the monoid M is replaced by the set

M′ =C′∩L

where C′ =C \F and F is the union of a set of faces (not necessarily facets) of C. What has
been said above about the structure of the weighted Ehrhart series remains true. We discuss
an example below.

It follows from the general theory of rational generating functions that there exists a quasipoly-
nomial q(k) with rational coefficients and of degree ≤ totdeg f + rankM−1 that evaluates to
E( f ,k) for all k ≥ 0.

Let m = totdeg f (we use this notation to distinguish the degree of the polynomial from teh
degree of lattice points) and fm be the degree m homogeneous component of f . By letting k
go to infinity and approximating fm by a step function that is constant on the meshes of 1

k L
(with respect to a fixed basis), one sees

q( j)
totdeg f+rankM−1 =

∫
P

fm dλ

where dλ is the Lebesgue measure that takes value 1 on a basic mesh of L∩RM in the hyper-
plane of degree 1 elements in RM. In particular, the virtual leading coefficient q( j)

totdeg f+rankM−1
is constant and depends only on fm. If the integral vanishes, the quasipolynomial q has smaller
degree, and the true leading coefficient need not be constant. Following the terminology of
commutative algebra and algebraic geometry, we call

(totdeg f + rankM−1)! ·qtotdeg f+rankM−1

the virtual multiplicity of M and f . It is an integer if fm has integral coefficients and P is a
lattice polytope.

The input format of polynomials has been discussed in Section 3.1.8.

The terminal output contains a factorization of the polynomial as well as some computation
results. From the terminal output you may also recognize that Normaliz first computes the
triangulation and the Stanley decomposition and then applies the algorithms for integrals and
weighted Ehrhart series.

Remarks (1) Large computations with many parallel threads require much memory due to
the fact that very long polynomials must be stored.

(2) You should think about the option BottomDecomposition. It will be applied to the sym-
metrized input. (Under the suitable conditions it is applied automatically.)
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6.6.1. A weighted Ehrhart series

We discuss the Condorcet paradox again (and the last time), now starting from the sym-
metrized form. The file Condorcet.symm.in from the directory example contains the fol-
lowing:

amb_space 8

inequalities 3

1 -1 1 1 1 -1 -1 -1

1 1 -1 1 -1 1 -1 -1

1 1 1 -1 -1 -1 1 -1

nonnegative

total_degree

polynpmial

1/120*1/120*(x[1]+5)*(x[1]+4)*(x[1]+3)*(x[1]+2)*(x[1]+1)*(x[2]+1)*
(x[3]+1)*(x[4]+1)*(x[5]+1)*(x[6]+1)*(x[7]+1)*(x[8]+5)*(x[8]+4)*
(x[8]+3)*(x[8]+2)*(x[8]+1);

We have seen this polynomial in Section 6.5 above.

From the Normaliz directory we start the computation by

./normaliz -cE example/Condorcet.symm

We could have used --WeightedEhrhartSeries instead of -E or put WeightedEhrhartSeries
into the input file.

The file Condorcet.symm.out we find the information on the weighted Ehrhart series:

Weighted Ehrhart series:

1 5 133 363 ... 481 15 6

Common denominator of coefficients: 1

Series denominator with 24 factors:

1: 1 2: 14 4: 9

degree of weighted Ehrhart series as rational function = -25

Weighted Ehrhart series with cyclotomic denominator:

...

The only piece of data that we haven’t seen already is the common denominator of coeffi-
cients. But since the polynomial has rational coefficients, we cannot any longer expect that
the polynomial in the numerator of the series has integral coefficients. We list them as inte-
gers, but must then divide them by the denominator (which is1 in thus case since the weighted
Ehrhart series is a Hilbert series in disguise). As usual, the representation with a denominator
of cyclotomic polynomials follows.

And we have the quasipolynomial as usual:

Weighted Ehrhart quasi-polynomial of period 4:
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0: 6939597901822221635907747840000 20899225...000000 ... 56262656

1: 2034750310223351797008092160000 7092764...648000 ... 56262656

2: 6933081849299152199775682560000 20892455...168000 ... 56262656

3: 2034750310223351797008092160000 7092764...648000 ... 56262656

with common denominator: 6939597901822221635907747840000

The left most column indicates the residue class modulo the period, and the numbers in line
k are the coefficients of the k-th polynomial after division by the common denominator. The
list starts with q(k)0 and ends with (the constant) q(k)23 . The interpretation of the remaining data
is obvious:

Degree of (quasi)polynomial: 23

Expected degree: 23

Virtual multiplicity: 1717/8192

6.6.2. Virtual multiplicty

Instead of the option -E (or (--WeightedEhrhartSeries) we use -L or (--VirtualMultiplicity).
Then we can extract the virtual multiicity from the output file.

6.6.3. An integral

In their papeir paper Multiplicities of lassical varieties (Proc. Lond. Math. Soc. (3) 110
(2015), 1033–105) J. Jeffries, J. Montaño and M. Varbaro ask for the computation of the
integral ∫

[0,1]m
∑x=t

(x1 · · ·xm)
n−m

∏
1≤i< j≤m

(x j− xi)
2dµ

taken over the intersection of the unit cube in Rm and the hyperplane of constant coordinate
sum t. It is supposed that t ≤ m≤ n. We compute the integral for t = 2, m = 4 and n = 6.

The polytope is specified in the input file j462.in (partially typeset in 2 columns):

amb_space 5 -1 0 0 0 1

inequalities 8 0 -1 0 0 1

1 0 0 0 0 0 0 -1 0 1

0 1 0 0 0 0 0 0 -1 1

0 0 1 0 0 equations 1

0 0 0 1 0 -1 -1 -1 -1 2

grading

unit_vector 5

polynomial
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(x[1]*x[2]*x[3]*x[4])^2*(x[1]-x[2])^2*(x[1]-x[3])^2*
(x[1]-x[4])^2*(x[2]-x[3])^2*(x[2]-x[4])^2*(x[3]-x[4])^2;

The 8 inequalities describe the unit cube in R4 by the inequalities 0≤ zi ≤ 1 and the equation
gives the hyperplane z1 + · · ·+ z4 = 2 (we must use homogenized coordinates!). (Normaliz
would find the grading itself.)

From the Normaliz directory the computation is called by

./normaliz -cI example/j462

where -I could be replaced by --Integral.

It produces the output in j462.out containing

Integral: 27773/29515186701000

6.6.4. Restrictions in MS Windows

We have not succeeded in compiling Normaliz with CoCoALib under MS Windows. in previ-
ous versions of Normaliz, the computations with polynomial weights were done by the sepa-
rate program NmzIntegrate, and NmzIntegrate can still be used (in all operating systems). One
must start the computation from NmzIntegrate (and not from Normaliz, as was also possible
in previous versions).

Unfortunately 1.3 the last version of NmzIntegrate that we could compile under MS Windows.
This causes some restrictions in the use of NmzIntegrate:

(1) Due to a bug it is possible that a segmentation fault occurs if excluded faces are used.
(2) The option OutputDir is not available.

An excellent way out is to run Normaliz (and NmzIntegrate) in the Linux subsystem of Win-
dows 10.

6.7. Explicit dehomogenization

Inhomogeneous input for data in Rd is homogenized by an extra (d + 1)th coordinate. The
dehomogenization sets the last coordinate equal to 1. Other systems may prefer the first co-
ordinate. By choosing an explicit dehomogenization Normaliz can be adapted to such input.
The file dehomogenization.in

amb_space 3

inequalities 2

-1 1 0

-1 0 1

dehomogenization

unit_vector 1

84



indicates that in this case the first variable is the homogenizing one. The output file

1 module generators

2 Hilbert basis elements of recession monoid

1 vertices of polyhedron

2 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2

size of triangulation = 0

resulting sum of |det|s = 0

dehomogenization:

1 0 0

module rank = 1

***********************************************************************

1 module generators:

1 1 1

2 Hilbert basis elements of recession monoid:

0 0 1

0 1 0

1 vertices of polyhedron: 3 support hyperplanes of polyhedron (homogenized)

1 1 1 -1 0 1

-1 1 0

2 extreme rays of recession cone: 1 0 0

0 0 1

0 1 0

shows that Normaliz does the computation in the same way as with implicit dehomogeniza-
tion, except that now the first coordinate decides what is in the polyhedron and what belongs
to the recession cone, roughly speaking.

Note that the dehomogenization need not be a coordinate. It can be any linear form that is
nonnegative on the cone generators.

85



6.8. Nonpointed cones

Nonpointed cones and nonpositive monoids contain nontrivial invertible elements. The main
effect is that certain data are no longer unique, or may even require a new definition. An
important point to note is that cones always split off their unit groups as direct summands
and the same holds for normal affine monoids. Since Normaliz computes only normal affine
monoids, we can always pass to the quotient by the unit groups. Roughly speaking, all data
are computed for the pointed quotient and then lifted back to the original cone and monoid.
It is inevitable that some data are no longer uniquely determined, but are unique only modulo
the unit group, for example the Hilbert basis and the extreme rays. Also the multiplicity and
the Hilbert series are computed for the pointed quotient. From the algebraic viewpoint this
means to replace the field K of coefficients by the group ring L of the unit group, which is a
Laurent polynomial ring over K: instead of K-vector space dimensions one considers ranks
over L.

6.8.1. A nonpointed cone

As a very simple example we consider the right halfplane (halfspace2.in):

amb_space 2

inequalities 1

1 0

When run in default mode, it yields the following output:

1 Hilbert basis elements

1 Hilbert basis elements of degree 1

1 extreme rays

1 support hyperplanes

embedding dimension = 2

rank = 2 (maximal)

external index = 1

dimension of maximal subspace = 1

size of triangulation = 1

resulting sum of |det|s = 1

grading:

1 0

degrees of extreme rays:

1: 1

Hilbert basis elements are of degree 1
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multiplicity = 1

Hilbert series:

1

denominator with 1 factors:

1: 1

degree of Hilbert Series as rational function = -1

Hilbert polynomial:

1

with common denominator = 1

rank of class group = 0

class group is free

***********************************************************************

1 Hilbert basis elements of degree 1:

1 0

0 further Hilbert basis elements of higher degree:

1 extreme rays:

1 0

1 basis elements of maximal subspace:

0 1

1 support hyperplanes:

1 0

In the preamble we learn that the cone contains a nontrivial subspace. In this case it is the
vertical axis, and close to the end we see a basis of this subspace, namely (0,1). This basis is
always simultaneously a Z-basis of the unit group of the monoid. The rest of the output is what
we have gotten for the positive horizontal axis which in this case is a natural representative of
the quotient modulo the maximal subspace, The quotient can always be embedded in the cone
or monoid respectively, but there is no canonical choice. We could have gotten (1,5) as the
Hilbert basis as well.

Normaliz has found a grading. Of course it vanishes on the unit group, but is positive on the
quotient monoid modulo the unit group.

Note that the data of type “dimension” (embedding dimension, rank, rank of recession monoid
in the inhomogeneous case, affine dimension of the polyhedron)) are measured before the
passage to the quotient modulo the maximal subspace. The same is true for equations and
congruences (which are trivial for the example above).
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6.8.2. A polyhedron without vertices

We define the affine halfspace of the figure by gen_inhom_nonpointed.in:

amb_space 2

cone 3

1 -1

-1 1

0 1

vertices 1

-1 -1 3

It is clear that the “vertex” is not a vertex in the strict sense, bt only gives a displacement of
the cone. The output when run in default mode:

1 module generators

1 Hilbert basis elements of recession monoid

1 vertices of polyhedron

1 extreme rays of recession cone

2 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2

internal index = 3

dimension of maximal subspace = 1

size of triangulation = 1

resulting sum of |det|s = 3

dehomogenization:

0 0 1

module rank = 1

***********************************************************************
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1 module generators:

0 0 1

1 Hilbert basis elements of recession monoid:

0 1 0

1 vertices of polyhedron:

0 -2 3

1 extreme rays of recession cone:

0 1 0

1 basis elements of maximal subspace:

1 -1 0

2 support hyperplanes of polyhedron (homogenized):

0 0 1

3 3 2

The “vertex” of the polyhedron shown is of course the lifted version of the vertex modulo the
maximal subspace. It is not the input “vertex”, but agrees with it up to a unit.

6.8.3. Checking pointedness first

Nonpointed cones will be an exception in Normaliz computations, and therefore Normaliz
assumes that the (recession) cone it must compute is pointed. Only in rare circumstances it
could be advisable to have this property checked first. There is no need to do so when the
dual algorithm is used since it does not require the cone to be pointed. Moreover, if an explicit
grading is given or a grading dependent computation is asked for, one cannot save time by
checking the pointedness first.

The exceptional case is a computation, say of a Hilbert basis, by the primal algorithm in which
the computation of the support hyperplanes needs very long time to be completed. If you are
afraid this may happen, you can force Normaliz to compute the support hyperplanes right
away by adding IsPointed to the computation goals. This is a disadvantage only if the cone
is unexpectedly pointed.

6.8.4. Input of a subspace

If a linear subspace contained in the cone is known a priori, it can be given to Normaliz via
the input type subspace. If Normaliz detects a subspace, it appends the rows of the matrix
to the generators of the cone, and additionally the negative of the sum of the rows (since we
must add the subspace as a cone). If subspace is combined with cone_and_lattice, then the
rows of subspace are also appended to the generators of the lattice. It is not assumed that the
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vectors in subspace are linearly independent or generate the maximal linear subspace of the
cone. A simple example (subspace4.in):

amb_space 4

cone 4

1 0 2 0

0 1 -2 1

0 0 0 1

0 0 0 -1

subspace 1

0 0 1 0

From the output:

2 Hilbert basis elements of degree 1:

0 1 0 0

1 0 0 0

0 further Hilbert basis elements of higher degree:

2 extreme rays:

0 1 0 0

1 0 0 0

2 basis elements of maximal subspace:

0 0 1 0

0 0 0 1

2 support hyperplanes:

0 1 0 0

1 0 0 0

One should note that the maximal subspace is generated by the smallest face that contains all
invertible elements. Therefore, in order to make all vectors in a face invertible, it is enough to
put a single vector from the interior of the face into subspace.

6.8.5. Data relative to the original monoid

If original monoid generators are defined, there are two data related to them that must be read
with care.

First of all, we consider the original monoid generators as being built from the vectors in cone

or cone_and_lattice plus the vectors in subspace and additionally the negative of the sum
of the latter (as pointed out above).

The test for “Original monoid is integrally closed’ is correct – it returns true if and only if
the original monoid as just defined indeed equals the computed integral closure. (There was a
mistake in version 3.0.)
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The “module generators over the original monoid” only refer to the image of the original
monoid and the image of the integral closure modulo the maximal subspace. They do not take
into account that the unit group of the integral closure may not be generated by the original
generators. An example in which the lack of integral closedness is located in the unit group
(normface.in):

amb_space 5

cone 4

0 0 0 1 1

1 0 0 1 1

0 1 0 1 1

0 0 1 1 1

subspace 4

0 0 0 0 1

1 0 0 0 1

0 1 0 0 1

1 1 2 0 1

From the output file:

...

dimension of maximal subspace = 4

original monoid is not integrally closed

unit group index = 2

...

1 Hilbert basis elements of degree 1:

0 0 0 1 0

...

1 module generators over original monoid:

0 0 0 0 0

The original monoid is not integrally closed since the unit group of the integral closure is
strictly larger than that of the original monoid: the extension has index 2, as indicated. The
quotients modulo the unit groups are equal, as can be seen from the generator over the original
monoid or the Hilbert basis (of the integral closure) that is contained in the original monoid.

6.9. Exporting the triangulation

The option -T asks Normaliz to export the triangulation by writing the files <project>.tgn

and <project>.tri:

tgn The file tgn contains a matrix of vectors (in the coordinates of A) spanning the simplicial
cones in the triangulation.

tri The file tri lists the simplicial subcones. There are two variants, depending on whether
ConeDecomposition had been set. Here we assume that ConeDecomposition is not
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computed. See Section 6.9.2 for the variant with ConeDecomposition.
The first line contains the number of simplicial cones in the triangulation, and the next
line contains the number m+1 where m = rankE. Each of the following lines specifies
a simplicial cone ∆: the first m numbers are the indices (with respect to the order in the
file tgn) of those generators that span ∆, and the last entry is the multiplicity of ∆ in
E, i. e. the absolute value of the determinant of the matrix of the spanning vectors (as
elements of E).

The following example is the 2-dimensional cross polytope with one excluded face (cross2.in).
The excluded face is irrelevant for the triangulation.

amb_space 3

polytope 4

1 0

0 1

-1 0

0 -1

excluded_faces 1

1 1 -1

Its tgn and tri files are

tgn tri

4 2

3 4

1 0 1 1 2 3 2

0 1 1 1 3 4 2

-1 0 1 plain

0 -1 1

We see the 4 vertices v1, . . . ,v4 in homogenized coordinates in tgn and the 2 simplices (or the
simplicial cones over them) in tri: both have multiplicity 2. The last word plain indicates
that Normaliz has computed a triangulation in the strict sense, namely a simplicial subdivision
in which neighboring simplicial cones match along common faces. The alternative is nested
that we discuss below.

In addition to the files <project>.tgn and <project>.tri, also the file <object>.inv is
written. It contains the data of the file <project>.out above the line of stars in a human and
machine readable format.

6.9.1. Nested triangulations

If Normaliz has subdivided a simplicial cone of a triangulation of the cone C, the resulting
decomposition of C may no longer be a triangulation in the strict sense. It is rather a nested
triangulation, namely a map from a rooted tree to the set of full-dimensional subcones of C
with the following properties:

(1) the root is mapped to C,
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(2) every other node is mapped to a full dimensional simplicial subcone,
(3) the simplicial subcones corresponding to the branches at a node x form a triangulation

of the simplicial cone corresponding to x.

The following figure shows a nested triangulation:

For the Normaliz computations, nested triangulations are as good as ordinary triangulations,
but in other applications the difference may matter. With the option -T, Normaliz prints the
leaves of the nested triangulation to the tri file. They constitute the simplicial cones that are
finally evaluated by Normaliz.

The triangulation is always plain if -T is the only computation goal or if it is just combined
with -v. Otherwise it can only fail to be plain if it contains determinants ≥ 108.

The subdivision cann be blocked by NoSubdivision, independently of the computation goals.

6.9.2. Disjoint decomposition

Normaliz can export the disjoint decomposition of the cone that it has computed. This decom-
position is always computed together with a full triangulation, unless only the multiplicity is
asked for. It represents the cone as the disjoint union of semiopen simplicial subcones. The
corresponding closed cones constitute the triangulation, and from each of them some facets
are removed so that one obtains a disjoint decomposition. See [9] for more information. In the
following figure, the facets separating the triangles are omitted in the triangle on the − side.

+−+
−+ −+

−+

−+

+
− −

+

−+
+

+

+ +

+

+

+

If you want to access the disjoint decomposition, you must activate the computation goal
ConeDecomposition or use the command line option is -D. As an example we compute cross2.in
with the computation goal ConeDecomposition. The file cross2.tri now looks as follows:
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2

7

1 2 3 2 0 0 0

2 3 4 2 0 0 1

plain

As before the first line contains the size of the triangulation and the second is the number of
entries of each row. The first 3 entries in each line are the indices of the extreme rays with
respect to the tgn file and the fourth entry is the determinant. They are followed by a 0/1
vector indicating the open facets in the order in which they are opposite to the extreme rays.
If the corresponding entry is 1, the facet must be removed.

In our example all facets of the first simplicial cone are kept, and from the second simplicial
cone the facet opposite to the third extreme ray (with index 4 relative to tgn) must be removed.

6.10. Exporting the Stanley decomposition

The option -y makes Normaliz write the files <project>.tgn, <project>.dec and <project>.inv.
Stanley decomposition is contained in the file with the suffix dec. But this file also contains
the inclusion/exclusion data if there are excluded faces:

(a) If there are any excluded faces, the file starts with the word in_ex_data. The next line
contains the number of such data that follow. Each of these lines contains the data of a face
and the coefficient with which the face is to be counted: the first number lists the number of
generators that are contained in the face, followed by the indices of the generators relative to
the tgn file and the last number is the coefficient.

(b) The second block (the first if there are no excluded faces) starts with the word Stanley_dec,
followed by the number of simplicial cones in the triangulation.

For each simplicial cone ∆ in the triangulation this file contains a block of data:

(i) a line listing the indices i1, . . . , im of the generators vi1 , . . . ,vim relative to the order in tgn

(as in tri, m = rankE);

(ii) a µ×m matrix where µ is the multiplicity of ∆ (see above).

In the notation of [9], each line lists an “offset” x+ ε(x) by its coordinates with respect
to vi1, . . . ,vim as follows: if (a1, . . . ,am) is the line of the matrix, then

x+ ε(x) =
1
µ
(a1vi1 + · · ·+amvim).

The dec file of the example above is

in_ex_data

1

2 1 2 -1

Stanley_dec
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2

1 3 4 1 2 3

2 2

3 3

0 0 2 0 0 0

1 1 2 1 0 1

There is 1 face in in_ex_data (namely the excluded one), it contains the 2 generators v1 and
v2 and appears with multiplicity −1. The Stanley decomposition consists of 4 components of
which each of the simplicial cone contains 2. The second offset in the second simplicial cone
is

1
2
(1v1 +0v2 +1v3) = (0,0,1).

We recommend you to process the file 3x3magiceven.in with the option -ahTy activated.
Then inspect all the output files in the subdirectory example of the distribution.

6.11. Module generators over the original monoid

Suppose that the original generators are well defined in the input. This is always the case
when these consists just of a cone or a cone_and_lattice. Let M be the monoid generated
by them. Then Normaliz computes the integral closure N of M in the effective lattice E. It
is often interesting to understand the difference set N \M. After the introduction of a field
K of coefficients, this amounts to understanding K[N] as a K[M]-module. With the option
ModuleGeneratorsOverOriginalMonoid, -M Normaliz computes a minimal generating set T
of this module. Combinatorially this means that we find an irreducible cover

N =
⋃
x∈T

x+M.

Note that 0 ∈ T since M ⊂ N.

0

As an example, we can run 2cone.in with the option -M on the command line. This yields the
output

...

4 Hilbert basis elements:
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1 1

1 2 5 module generators over original monoid:

1 3 0 0

2 1 1 1

1 2

2 extreme rays: 2 2

1 3 2 3

2 1

In the nonpointed case Normaliz can only compute the module generators of N/N0 over
M/(M ∩N0) where N0 is the unit group of N. If M0 6= M0, this is not a system of genera-
tors of M over N.

6.11.1. An inhomogeneous example

Let us have a look at a very simple input file (genmod_inhom2.in):

amb_space 2

cone 2

0 3

2 0

vertices 1

0 0 1

ModuleGeneratorsOverOriginalMonoid

The cone is the positive orthant that we have turned into a polyhedron by adding the vertex
(0,0). The original monoid is generated by (2,0) and (0,3).

In addition to the original monoid M and its integral closure N we have a third object, namely
the module P of lattice points in the polyhedron.We compute

1. the system of generators of P over N (the module generators) and

2. the system of generators of P over N (the module generators over original monoid).

We do not compute the system of generators of N over M (that we get in the homogeneous
case).

The output:

1 module generators

2 Hilbert basis elements of recession monoid

1 vertices of polyhedron

2 extreme rays of recession cone

6 module generators over original monoid

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal)

rank of recession monoid = 2
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internal index = 6

size of triangulation = 1

resulting sum of |det|s = 6

dehomogenization:

0 0 1

module rank = 1

***********************************************************************

1 module generators:

0 0 1

2 Hilbert basis elements of recession monoid:

0 1 0

1 0 0

1 vertices of polyhedron:

0 0 1

2 extreme rays of recession cone:

0 1 0

1 0 0

6 module generators over original monoid:

0 0 1

0 1 1

0 2 1

1 0 1

1 1 1

1 2 1

3 support hyperplanes of polyhedron (homogenized):

0 0 1

0 1 0

1 0 0

6.12. Precomputed support hyperplanes

Computing the support hyperplanes can be a very time consuming task, and if it has been
the first step in the exploration of a difficult example, it may be desirable, to use the support
hyperplanes as additional input in order to save computation time. This is especially true if
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Normaliz must do an intermediate computation of the support hyperplanes because of a large
number of simplicial cones to be evaluated. The file 2cone_supp.in is just a toy example:

amb_space 2

cone 2

2 1

1 3

support_hyperplanes 2

-1 2

3 -1

As pointed out in Section 3.3.1, Normaliz must trust you—here is no way of checking the
correctness of this input without recomputing it.

6.13. Shift, denominator, quasipolynomial and multiplicity

In this section we discuss the interplay of shift, denominator of the grading and the quasipoly-
nomial. As long as the denominator is 1, the situation is very simple and no ambiguity arises.
See Section 2.9. We modify the example from that section as follows (InhomIneq_7.in):

amb_space 2

inhom_inequalities 3

0 2 1

0 -2 3

2 -2 3

grading

7 0

The output related to the grading is

grading:

7 0 0

with denominator = 7

module rank = 2

multiplicity = 2

Hilbert series:

1 1

denominator with 1 factors:

1: 1

shift = -1

degree of Hilbert Series as rational function = -1
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Hilbert polynomial:

2

with common denominator = 1

The Hilbert series computed by hand is

t−7 +1
1− t7 .

We obtain it from the output as follows. The printed series is

1+ t
1− t

.

Now the shift is applied and yields
t−1 +1

1− t
.

Finally we make the substitution t 7→ t7, and obtain the desired result.

Now we add the complication x1 + x2 ≡−1 mod 8 ((InhomIneq_7_8.in):

amb_space 2

inhom_inequalities 3

0 2 1

0 -2 3

2 -2 3

grading

7 0

inhom_congruences 1

1 1 1 8

The result:
grading:

7 0 0

with denominator = 7

module rank = 2

multiplicity = 1/4

Hilbert series:

1 0 0 0 0 0 0 1

denominator with 1 factors:

8: 1

shift = -1

degree of Hilbert Series as rational function = -2
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Hilbert series with cyclotomic denominator:

-1 1 -1 1 -1 1 -1

cyclotomic denominator:

1: 1 4: 1 8: 1

Hilbert quasi-polynomial of period 8:

0: 0 4: 0

1: 0 5: 0

2: 0 6: 1

3: 0 7: 1

with common denominator = 1

The printed Hilbert series is
1+ t7

1− t8 .

The application of the shift yields
t−1 + t6

1− t8 .

the correct result for the divided grading. The Hilbert quasipolynomial is computed for the
divided grading, as already explained in Section 2.6.1. As a last step, we can apply the substi-
tution t 7→ t7 in order obtain the Hilbert series

t−7 + t42

1− t56

for the original grading.

Like the quasipolynomial, the multiplicity is computed for the divided grading.

7. Optional output files

When one of the options Files,-f or AllFiles, -a is activated, Normaliz writes additional
output files whose names are of type <project>.<type>. (Note that the options -T, Triangulation

and -y, StanleyDec as well as the options -E, -L, -I calling NmzIntegrate also write files
in addition to <project>.out. Symmetrize does not produce extra output files.) Moreover
one can select the optional output files individually via command line options. Most of these
files contain matrices in a simple format:

<m>

<n>

<x_1>

...

<x_m>
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where each row has <n> entries. Exceptions are the files with suffixes cst, inv, esp.

Note that the files are only written if they would contain at laest one row.

As pointed out in Section 5.5, the optional output files for the integer hull are the same as for
the original computation, as far as their content has been computed.

7.1. The homogeneous case

The option -f makes Normaliz write the following files:

gen contains the Hilbert basis. If you want to use this file as an input file and reproduce the
computation results, then you must make it a matrix of type cone_and_lattice (and
add the dehomogenization in the inhomogeneous case).

cst contains the constraints defining the cone and the lattice in the same format as they
would appear in the input: matrices of types constraints following each other. Each
matrix is concluded by the type of the constraints. Empty matrices are indicated by 0 as
the number of rows. Therefore there will always be at least 3 matrices.
If a grading is defined, it will be appended. Therefore this file (with suffix in) as input
for Normaliz will reproduce the Hilbert basis and all the other data computed, at least
in principle.

inv contains all the information from the file out that is not contained in any of the other
files.

If -a is activated, then the following files are written additionally:

ext contains the extreme rays of the cone.
ht1 contains the degree 1 elements of the Hilbert basis if a grading is defined.

egn,esp These contain the Hilbert basis and support hyperplanes in the coordinates with re-
spect to a basis of E. esp contains the grading and the dehomogenization in the coordi-
nates of E. Note that no equations for C∩E or congruences for E are necessary.

lat contains the basis of the lattice E.
mod contains the module generators of the integral closure modulo the original monoid.
msp contains the basis of the maximal subspace.

In order to select one or more of these files individually, add an option of type --<suffix> to
the command line where <suffix> can take the values

gen, cst, inv, ext, ht1, egn, esp, lat, mod, msp, typ

The type typ is not contained in Files or AllFiles since it can be extremely large. It is of
the matrix format described above. It is the product of the matrices corresponding to egn and
the transpose of esp. In other words, the linear forms representing the support hyperplanes of
the cone C are evaluated on the Hilbert basis. The resulting matrix, with the generators corre-
sponding to the rows and the support hyperplanes corresponding to the columns, is written to
this file.

The suffix typ is motivated by the fact that the matrix in this file depends only on the isomor-
phism type of monoid generated by the Hilbert basis (up to row and column permutations). In
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the language of [5] it contains the standard embedding.

Note: the explicit choice of an optional output file does not imply a computation goal. Out-
put files that would contain unknown data are simply not written without a warning or error
message.

7.2. Modifications in the inhomogeneous case

The optional output files are a subset of those that can be produced in the homogeneous case.
The main difference is that the generators of the solution module and the Hilbert basis of the
recession monoid appear together in the file gen. They can be distinguished by evaluating the
dehomogenization on them (simply the last component with inhomogeneous input), and the
same applies to the vertices of the polyhedron and extreme rays of the recession cone. The file
cst contains the constraints defining the polyhedron and the recession module in conjunction
with the dehomogenization, which is also contained in the cst file, following the constraints.

With -a the files egn and esp are produced. These files contain gen and the support hyper-
planes of the homogenized cone in the coordinates of E, as well as the dehomogenization.

8. Performance

8.1. Parallelization

The executables of Normaliz have been compiled for parallelization on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” time of the computations considerably,
even on relatively small systems. However, one should not underestimate the administrational
overhead involved.

• It is not a good idea to use parallelization for very small problems.
• On multi-user systems with many processors it may be wise to limit the number of

threads for Normaliz somewhat below the maximum number of cores.

The number of parallel threads can be limited by the Normaliz option -x (see Section 5.3) or
by the commands

export OMP_NUM_THREADS=<T> (Linux/Mac)

or

set OMP_NUM_THREADS=<T> (Windows)

where <T> stands for the maximum number of threads accessible to Normaliz. For example,
we often use

export OMP_NUM_THREADS=20
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on a multi-user system system with 24 cores.

Limiting the number of threads to 1 forces a strictly serial execution of Normaliz.

The paper [9] contains extensive data on the effect of parallelization. On the whole Normaliz
scales very well. However, the dual algorithm often performs best with mild parallelization,
say with 4 or 6 threads.

8.2. Running large computations

Normaliz can cope with very large examples, but it is usually difficult to decide a priori
whether an example is very large, but nevertheless doable, or simply impossible. Therefore
some exploration makes sense.

See [9] for some very large computations. The following hints reflect the authors’ experience
with them.

(1) Run Normaliz with the option -cs and pay attention to the terminal output. The number
of extreme rays, but also the numbers of support hyperplanes of the intermediate cones are
useful data.

(2) In many cases the most critical size parameter is the number of simplicial cones in the
triangulation. It makes sense to determine it as the next step. Even with the fastest potential
evaluation (option -v), finding the triangulation takes less time, say by a factor between 3 and
10. Thus it makes sense to run the example with -t in order to explore the size.

As you can see from [9], Normaliz has successfully evaluated triangulations of size ≈ 5 ·1011

in dimension 24.

(3) Another critical parameter are the determinants of the generator matrices of the simplicial
cones. To get some feeling for their sizes, one can restrict the input to a subset (of the extreme
rays computed in (1)) and use the option -v or the computation goal TriangulationDetSum if
there is no grading.

The output file contains the number of simplicial cones as well as the sum of the absolute
values of the determinants. The latter is the number of vectors to be processed by Normaliz in
triangulation based calculations.

The number includes the zero vector for every simplicial cone in the triangulation. The zero
vector does not enter the Hilbert basis calculation, but cannot be neglected for the Hilbert
series.

Normaliz has mastered calculations with > 1015 vectors.

(4) If the triangulation is small, we can add the option -T in order to actually see the triangu-
lation in a file. Then the individual determinants become visible.

(5) If a cone is defined by inequalities and/or equations consider the dual mode for Hilbert
basis calculation, even if you also want the Hilbert series.

(6) The size of the triangulation and the size of the determinants are not dangerous for memory
by themselves (unless -T or -y are set). Critical magnitudes can be the number of support
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hyperplanes, Hilbert basis candidates, or degree 1 elements.

9. Distribution and installation

In order to install Normaliz you should first download the basic package from

http://normaliz.uos.de.

It contains the documentation, examples, source code, jNormaliz, NmzIntegrate and the pack-
ages for PyNormaliz, Singular and Macaulay2. Then unzip the downloaded file normaliz-3.3.0.zip
in a directory of your choice. (Any other downloaded zip file for Normaliz should be unzipped
in this directory, too.)

This process will create a directory normaliz-3.3.0 (called Normaliz directory) and several
subdirectories in it. The names of the subdirectories created are self-explanatory. Nevertheless
we give an overview:

• In the Normaliz directory you should find jNormaliz.jar, several files, for example
Copying, and subdirectories.
• The subdirectory source contains the source files. The subdirectory genEhrhart con-

tains the NmzIntegrate source.
• The subdirectory doc contains the file you are reading and further documentation.
• In the subdirectory example are the input files for some examples. It contains all named

input files of examples of this manual.
• Automated tests which run Normaliz on different inputs and options are contained in

the subdirectory test.
• The subdirectory Singular contains the SINGULAR library normaliz.lib and a PDF

file with documentation.
• The subdirectory Macaulay2 contains the MACAULAY2 package Normaliz.m2.
• The subdirectory PyNormaliz contains the source PYTHON interface.
• The subdirectory lib contains libraries for jNormaliz.
• Moreover, there are subdirectories whose name starts with Q. They contain the source

code, examples and tests for QNormaliz (see Appendix F)

We provide executables for Windows, Linux and Mac. Download the archive file correspond-
ing to your system normaliz-3.3.0<systemname>.zip and unzip it. This process will store
the executables of Normaliz and NmzIntegrate in the Normaliz directory. In case you want to
run Normaliz from the command line or use it from other systems, you may have to copy the
executables to a directory in the search path for executables.

Please read the release notes on the download page. Especially on Mac you may want to
build Normaliz yourself since it is impossible to provide a statically linked executable with
parallelilzation.
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10. Building Normaliz yourself

Normaliz offers the luxury of three build systems:

1. autotools,

2. cmake

3. “classical” make using the “handwritten” Makefile.classic.

The basic steps are the same for all three systems, namely

• configuration,
• compilation,
• installation.

The main difference is the way how the build system is configured whereas compilation and
installation are essentially identical. In all cases the compilation of NmzIntegrate is included
(as well as the compilation of the example program maxsimplex in Appendix D.7).

In the following we describe the basic steps of autotools and cmake for Linux 64 bit under
certain standard assumptions. Comments on Mac OS follow in Section 10.6 The file INSTALL

in the directory source contains more information. Makefile.classic is only meant for
Linux and the development of Normaliz.

The autotools scripts have been written by Matthias Köppe. The Normaliz team thanks him
cordially for his generous help.

10.1. Compiler prerequisites

We require some C++11 features (e.g. std::exception_ptr), supported by:

• GNU g++ 4.4,
• clang++ 2.9,
• Intel icpc 12.0

See https://github.com/Normaliz/Normaliz/issues/26 for a more detailed discussion.

The mentioned compilers are also able to handle OpenMP 3.0, with the exception of clang++,
there the first OpenMP support was introduced in 3.7.

10.2. Required libraries

For compiling Normaliz the following libraries are needed:

• GMP including the C++ wrapper (libgmpxx and libgmp)
• Boost (headers only)

We will only discuss the basic use of cmake for compilation, see the file source/INSTALL

for additional information, especially on how to use customized paths. Also the use of the
autotools system is explained in this file. The “classical” Makefile is meant for development.
Therefore you should use autotools or cmake.
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The installation will store the files in standard locations, and we assume in the following that
they do not need individual include paths.

10.3. Optional packages

As discussed in the manual, Normaliz can profit from the use of SCIP. If you want to use it,
SCIP must be installed before the compilation of Normaliz, independently of the method used
for building Normaliz.

To build SCIP download the scipoptsuite at http://scip.zib.de/. Notice that SCIP is not
distributed under GPL, but the ZIB Academic License (http://scip.zib.de/academic.txt).
Unpack it and then compile it with

make ZLIB=false GMP=false READLINE=false scipoptlib

Another optional package is CoCoALib. It is necessary if you want to compute integrals or
weighted Ehrhart series and, hence, for symmetrization. If you want to compile Normaliz with
CoCoALib, install CoCoALib first. The following sequence of commands will install it in the
subdirectory CoCoA of your home directory.

mkdir ~/CoCoA/

cd ~/CoCoA/

wget http://cocoa.dima.unige.it/cocoalib/tgz/CoCoALib-0.99543.tgz

tar xvf CoCoALib-0.99543.tgz

cd CoCoALib-0.99543

./configure --threadsafe-hack --no-boost

make library -j2

If CoCoALib-0.99543 should be no longer available, replace it by a newer version.

10.4. autotools

To build Normaliz with the autotools system, navigate to the Normaliz directory and issue
the following sequence of commands:

./configure

make

This will compile Normaliz, but most likely without SCIP and CoCoALib since they are op-
tional libraries mentioned above and must be found. If they are not located at standard places,
you must specify their paths. Examples (on the machine of a Normaliz team member):

./configure --with-scipoptsuite-src=$HOME/SCIP/scipoptsuite-3.2.0/

or
./configure --with-cocoalib=$HOME/CoCoA/CoCoALib-0.99543
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or with both paths. If the libraries are found, Normaliz will be compiled with SCIP and
CoCoALib, respectively, by the make command. Check the terminal output of ./configure
for success.

The next step is

make

After this step you will find normaliz in the directory source (and maxsimplex in its direc-
tory).

The last, optional step is

sudo make install

It copies the header files, the library libnormaliz and the executables (except maxsimplex)
into subdirectories of /usr/local. It is of course possible to specify another installation path
in the call of ./configure.

Note: In case you have checked out Normaliz from GitHub, the very first step is ./bootstrap.sh.

Unfortunately, the paths for SCIP are version dependent. We have tested versions 3.2.0 and
3.2.1.

10.5. cmake

You may need to install cmake first:

sudo apt-get cmake cmake-curses-gui

To build Normaliz with cmake, start by creating a build directory within the Normaliz directory,
say BUILD. Then change the working directory to BUILD.

The basic configuration (equivalent to configure of autotools) is

cmake ../source

Then make and make install will complete the basic installation.

For the inclusion of SCIP, use (for example)

SCIP_DIR=$HOME/SCIP/scipoptsuite-3.2.0/ cmake ../source

replacing $HOME/SCIP/scipoptsuite-3.2.0/ with your own path to SCIP if necessary. Sim-
ilarly,

COCOA_DIR=$HOME/CoCoA/CoCoALib-0.99543 cmake ../source/

Then make and make install will complete the work. After make the executables can be
found in BUILD and its subdirectories genEhrhart and maxsimplex.

The main advantage of cmake is the existence of a GUI in which you can change most settings
originally chosen by cmake. Call ccmake ../source (2 times c) or, for a more sophisticated
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version, cmake-gui ../source.

Note: Unfortunately, the paths for SCIP are version dependent. The configuration files for
SCIP presently can find the versions 3.2.0 and 3.2.1. For another version you must edit the
file FindSCIP.cmake in source/cmake/Modules.

10.6. Mac OS X

Currently Apple does not supply a compiler which supports OpenMP. We recommend the
use of LLVM 3.9 or newer from Homebrew. See http://brew.sh/ from where you can also
download GMP and Boost. For details see INSTALL in the directory source of the distribution.

For building Normaliz under Mac OS we recommend auttotools if you want to use SCIP.

You can then follow the instructions for Linux.

Note: Do not try to compile Normaliz with static libraries for Mac OS X.

10.7. Windows

One can compile Windows executables with the Cygwin port of GCC. Unfortunately it is not
compatible to OpenMP.

Using Visual Studio is a bit tricky. Microsoft’s C++ compiler does not support OpenMP 3.0.
Creating a Normaliz Visual Studio project via cmake is currently not fully supported. The
executables that are offered in the Normaliz distribution have been compiled with icpc and a
manually created project. Please contact us if you want to build Normaliz on Windows.

Note that the statically linked Linux binaries run in the Linux susystem of Windows 10. We
have not yet tried to build Normaliz in it.

11. Copyright and how to cite

Normaliz 3.1 is free software licensed under the GNU General Public License, version 3. You
can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which it has been used:

W. Bruns, B. Ichim, T. Römer, R. Sieg and C. Söger: Normaliz. Algorithms for rational
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cones and affine monoids. Available at http://normaliz.uos.de

The corresponding \bibitem:

\bibitem{Normaliz} W. Bruns, B. Ichim, T. R\"omer, R. Sieg and C. S\"oger:

Normaliz. Algorithms for rational cones and affine monoids.

Available at \url{http://normaliz.uos.de}.

A BibTeX entry:

@Misc{Normaliz,

author = {W. Bruns and B. Ichim and T. R\"omer and R. Sieg and C. S\"oger},

title = Normaliz. Algorithms for rational cones and affine monoids,

howpublished ={Available at \url{http://normaliz.uos.de}}

It is now customary to evaluate mathematicians by such data as numbers of publications,
citations and impact factors. The data bases on which such dubious evaluations are based do
not list mathematical software. Therefore we ask you to cite the article [9] in addition. This is
very helpful for the younger members of the team.
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A. Mathematical background and terminology

For a coherent and thorough treatment of the mathematical background we refer the reader to
[5].

A.1. Polyhedra, polytopes and cones

An affine halfspace of Rd is a subset given as

H+
λ
= {x : λ (x)≥ 0},

where λ is an affine form, i.e., a non-constant map λ : Rd→R, λ (x) = α1x1+ · · ·+αdxd +β

with α1, . . . ,αd,β ∈ R. If β = 0 and λ is therefore linear, then the halfspace is called linear.
The halfspace is rational if λ is rational, i.e., has rational coordinates. If λ is rational, we
can assume that it is even integral, i.e., has integral coordinates, and, moreover, that these are
coprime. Then λ is uniquely determined by H+

λ
. Such integral forms are called primitive, and

the same terminology applies to vectors.

Definition 1. A (rational) polyhedron P is the intersection of finitely many (rational) halfs-
paces. If it is bounded, then it is called a polytope. If all the halfspaces are linear, then P is a
cone.

The dimension of P is the dimension of the smallest affine subspace aff(P) containing P.

A support hyperplane of P is an affine hyperplane H that intersects P, but only in such a way
that H is contained in one of the two halfspaces determined by H. The intersection H ∩P is
called a face of P. It is a polyhedron (polytope, cone) itself. Faces of dimension 0 are called
vertices, those of dimension 1 are called edges (in the case of cones extreme rays), and those
of dimension dim(P)−1 are facets.

When we speak of the support hyperplanes of P, then we mean those intersecting P in a facet.
Their halfspaces containing P cut out P from aff(P). If dim(P) = d, then they are uniquely
determined (up to a positive scalar).

The constraints by which Normaliz describes polyhedra are

(1) linear equations for aff(P) and
(2) linear inequalities (simply called support hyperplanes) cutting out P from aff(P).

In other words, the constraints are given by a linear system of equations and inequalities,
and a polyhedron is nothing else than the solution set of a linear system of inequalities and
equations. It can always be represented in the form

Ax≥ b, A ∈ Rm×d,b ∈ Rm,

if we replace an equation by two inequalities.
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A.2. Cones

The definition describes a cone by constraints. One can equivalently describe it by generators:

Theorem 2 (Minkowski-Weyl). The following are equivalent for C ⊂ Rd;

1. C is a (rational) cone;

2. there exist finitely many (rational) vectors x1, . . . ,xn such that

C = {a1x1 + · · ·+anxn : a1, . . . ,an ∈ R+}.

By R+ we denote the set of nonnegative real numbers; Q+ and Z+ are defined in the same
way.

The conversion between the description by constraints and that by generators is one of the
basic tasks of Normaliz. It uses the Fourier-Motzkin elimination.

Let C0 be the set of those x ∈ C for which −x ∈ C as well. It is the largest vector subspace
contained in C. A cone is pointed if C0 = 0. If a rational cone is pointed, then it has uniquely
determined extreme integral generators. These are the primitive integral vectors spanning the
extreme rays. These can also be defined with respect to a sublattice L of Zd , provided C is
contained in RL. If a cone is not pointed, then Normaliz computes the extreme rays of the
pointed C/C0 and lifts them to C. (Therefore they are only unique modulo C0.)

The dual cone C∗ is given by

C∗ = {λ ∈ (Rd)∗ : λ (x)≥ 0 for all x ∈C}.

Under the identification Rd = (Rd)∗∗ one has C∗∗ =C. Then one has

dimC0 +dimC∗ = d.

In particular, C is pointed if and only if C∗ is full dimensional, and this is the criterion for
pointedness used by Normaliz. Linear forms λ1, . . . ,λn generate C∗ if and only if C is the
intersection of the halfspaces H+

λi
. Therefore the conversion from constraints to generators

and its converse are the same task, except for the exchange of Rd and its dual space.

A.3. Polyhedra

In order to transfer the Minkowski-Weyl theorem to polyhedra it is useful to homogenize
coordinates by embedding Rd as a hyperplane in Rd+1, namely via

κ : Rd → Rd+1, κ(x) = (x,1).

If P is a (rational) polyhedron, then the closure of the union of the rays from 0 through the
points of κ(P) is a (rational) cone C(P), called the cone over P. The intersection C(P)∩(Rd×
{0}) can be identified with the recession (or tail) cone

rec(P) = {x ∈ Rd : y+ x ∈ P for all y ∈ P}.
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It is the cone of unbounded directions in P. The recession cone is pointed if and only if P has
at least one bounded face, and this is the case if and only if it has a vertex.

The theorem of Minkowski-Weyl can then be generalized as follows:

Theorem 3 (Motzkin). The following are equivalent for a subset P 6= /0 of Rd:

1. P is a (rational) polyhedron;

2. P = Q+C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the convex hull of its vertices, and C = rec(P)
is uniquely determined.

The convex hull of a subset X ∈ Rd is

conv(X) = {a1x1 + · · ·+anxn : n≥ 1,x1, . . . ,xn ∈ X ,a1, . . . ,an ∈ R+,a1 + · · ·+an = 1}.

Clearly, P is a polytope if and only if rec(P) = {0}, and the specialization to this case one
obtains Minkowski’s theorem: a subset P of Rd is a polytope if and only if it is the convex
hull of a finite set. A lattice polytope is distinguished by having integral points as vertices.

Normaliz computes the recession cone and the polytope Q if P is defined by constraints.
Conversely it finds the constraints if the vertices of Q and the generators of C are specified.

Suppose that P is given by a system

Ax≥ b, A ∈ Rm×d, b ∈ Rm,

of linear inequalities (equations are replaced by two inequalities). Then C(P) is defined by the
homogenized system

Ax− xd+1b≥ 0

whereas the rec(P) is given by the associated homogeneous system

Ax≥ 0.

It is of course possible that P is empty if it is given by constraints since inhomogeneous
systems of linear equations and inequalities may be unsolvable. By abuse of language we call
the solution set of the associated homogeneous system the recession cone of the system.

Via the concept of dehomogenization, Normaliz allows for a more general approach. The
dehomogenization is a linear form δ on Rd+1. For a cone C̃ in Rd+1 and a dehomogenization
δ , Normaliz computes the polyhedron P = {x∈ C̃ : δ (x) = 1} and the recession cone C = {x∈
C̃ : δ (x) = 0}. In particular, this allows other choices of the homogenizing coordinate. (Often
one chooses x0, the first coordinate then.)

In the language of projective geometry, δ (x) = 0 defines the hyperplane at infinity.
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A.4. Affine monoids

An affine monoid M is a finitely generated submonoid of Zd for some d ≥ 0. This means:
0 ∈M, M+M ⊂M, and there exist x1, . . . ,xn such that

M = {a1x1 + · · ·+anxn : a1, . . . ,an ∈ Z+}.

We say that x1, . . . ,xn is a system of generators of M. A monoid M is positive if x ∈ M and
−x ∈M implies x = 0. An element x in a positive monoid M is called irreducible if it has no
decomposition x = y+ z with y,z ∈ M, y,z 6= 0. The rank of M is the rank of the subgroup
gp(M) of Zd generated by M. (Subgroups of Zd are also called sublattices.) For certain aspects
of monoid theory it is very useful (or even necessary) to introduce coefficients from a field K
(or a more general commutative ring) and consider the monoid algebra K[M].

Theorem 4 (van der Corput). Every positive affine monoid M has a unique minimal system of
generators, given by its irreducible elements.

We call the minimal system of generators the Hilbert basis of M. Normaliz computes Hilbert
bases of a special type of affine monoid:

Theorem 5 (Gordan’s lemma). Let C ⊂ Rd be a (pointed) rational cone and let L ⊂ Zd be a
sublattice. Then C∩L is a (positive) affine monoid.

The monoids M =C∩L of the theorem have the pleasant property that the group of units M0
(i.e., elements whose inverse also belongs to M) splits off as a direct summand. Therefore
M/M0 is a well-defied affine monoid. If M is not positive, then Normaliz computes a Hilbert
basis of M/M0 and lifts it to M.

Let M ⊂ Zd be an affine monoid, and let N ⊃M be an overmonoid (not necessarily affine), for
example a sublattice L of Zd containing M.

Definition 6. The integral closure (or saturation) of M in N is the set

M̂N = {x ∈ N : kx ∈M for some k ∈ Z,k > 0}.

If M̂N = M, one calls M integrally closed in N.

The integral closure M of M in gp(M) is its normalization. M is normal if M = M.

The integral closure has a geometric description:

Theorem 7.
M̂N = cone(M)∩N.

Combining the theorems, we can say that Normaliz computes integral closures of affine
monoids in lattices, and the integral closures are themselves affine monoids as well. (More
generally, M̂N is affine if M and N are affine.)
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In order to specify the intersection C∩ L by constraints we need a system of homogeneous
inequalities for C. Every sublattice of Zd can be written as the solution set of a combined sys-
tem of homogeneous linear diophantine equations and a homogeneous system of congruences
(this follows from the elementary divisor theorem). Thus C∩ L is the solution set of a ho-
mogeneous linear diophantine system of inequalities, equations and congruences. Conversely,
the solution set of every such system is a monoid of type C∩L.

In the situation of Theorem 7, if gp(N) has finite rank as a gp(M)-module, M̂N is even a finitely
generated module over M. I.e., there exist finitely many elements y1, . . . ,ym ∈ M̂N such that
M̂N =

⋃m
i=1 M + yi. Normaliz computes a minimal system y1, . . . ,ym and lists the nonzero

yi as a system of module generators of M̂N modulo M. We must introduce coefficients to
make this precise: Normaliz computes a minimal system of generators of the K[M]-module
K[M̂N ]/K[M].

A.5. Affine monoids from binomial ideals

Let U be a subgroup of Zn. Then the natural image M of Zn
+ ⊂ Zn in the abelian group

G = Zn/U is a submonoid of G. In general, G is not torsionfree, and therefore M may not
be an affine monoid. However, the image N of M in the lattice L = G/torsion(G) is an affine
monoid. Given U , Normaliz chooses an embedding L ↪→ Zr, r = n− rankU , such that N
becomes a submonoid of Zr

+. In general there is no canonical choice for such an embedding,
but one can always find one, provided N has no invertible element except 0.

The typical starting point is an ideal J ⊂ K[X1, . . . ,Xn] generated by binomials

Xa1
1 · · ·X

an
n −Xb1

1 · · ·X
bn
n .

The image of K[X1, . . . ,Xn] in the residue class ring of the Laurent polynomial ring S =
K[X±1

1 , . . . ,X±1
n ] modulo the ideal JS is exactly the monoid algebra K[M] of the monoid M

above if we let U be the subgroup of Zn generated by the differences

(a1, . . . ,an)− (b1, . . . ,bn).

Ideals of type JS are called lattice ideals if they are prime. Since Normaliz automatically
passes to G/torsion(G), it replaces JS by the smallest lattice ideal containing it.

A.6. Lattice points in polyhedra

Let P ⊂ Rd be a rational polyhedron and L ⊂ Zd be an affine sublattice, i.e., a subset w+L0
where w ∈ Zd and L0 ⊂ Zd is a sublattice. In order to investigate (and compute) P∩L one
again uses homogenization: P is extended to C(P) and L is extended to L = L0 +Z(w,1).
Then one computes C(P)∩L . Via this “bridge” one obtains the following inhomogeneous
version of Gordan’s lemma:
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Theorem 8. Let P be a rational polyhedron with vertices and L = w+L0 an affine lattice as
above. Set recL(P) = rec(P)∩L0. Then there exist x1, . . . ,xm ∈ P∩L such that

P∩L = {(x1 + recL(P))∩·· ·∩ (xm + recL(P))}.

If the union is irredundant, then x1, . . . ,xm are uniquely determined.

The Hilbert basis of recL(P) is given by {x : (x,0)∈Hilb(C(P)∩L )} and the minimal system
of generators can also be read off the Hilbert basis of C(P)∩L : it is given by those x for which
(x,1) belongs to Hilb(C(P)∩L ). (Normaliz computes the Hilbert basis of C(P)∩L only at
“levels” 0 and 1.)

We call recL(P) the recession monoid of P with respect to L (or L0). It is justified to call P∩L
a module over recL(P). In the light of the theorem, it is a finitely generated module, and it has
a unique minimal system of generators.

After the introduction of coefficients from a field K, recL(P) is turned into an affine monoid
algebra, and N = P∩L into a finitely generated torsionfree module over it. As such it has a
well-defined module rank mrank(N), which is computed by Normaliz via the following com-
binatorial description: Let x1, . . . ,xm be a system of generators of N as above; then mrank(N)
is the cardinality of the set of residue classes of x1, . . . ,xm modulo recL(P).

Clearly, to model P∩ L we need linear diophantine systems of inequalities, equations and
congruences which now will be inhomogeneous in general. Conversely, the set of solutions of
such a system is of type P∩L.

A.7. Hilbert series

Normaliz can compute the Hilbert series and the Hilbert (quasi)polynomial of a graded monoid.
A grading of a monoid M is simply a homomorphism deg : M→ Zg where Zg contains the
degrees. The Hilbert series of M with respect to the grading is the formal Laurent series

H(t) = ∑
u∈Zg

#{x ∈M : degx = u}tu1
1 · · · t

ug
g = ∑

x∈M
tdegx,

provided all sets {x ∈ M : degx = u} are finite. At the moment, Normaliz can only handle
the case g = 1, and therefore we restrict ourselves to this case. We assume in the following
that degx > 0 for all nonzero x ∈ M and that there exists an x ∈ gp(M) such that degx = 1.
(Normaliz always rescales the grading accordingly.) In the case of a nonpositive monoid, these
conditions must hold for M/M0, and its Hilbert series is considered as the Hilbert series of M.

The basic fact about H(t) in the Z-graded case is that it is the Laurent expansion of a rational
function at the origin:

Theorem 9 (Hilbert, Serre; Ehrhart). Suppose that M is a normal positive affine monoid. Then

H(t) =
R(t)

(1− te)r , R(t) ∈ Z[t],

where r is the rank of M and e is the least common multiple of the degrees of the extreme
integral generators of cone(M). As a rational function, H(t) has negative degree.
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The statement about the rationality of H(t) holds under much more general hypotheses.

Usually one can find denominators for H(t) of much lower degree than that in the theorem,
and Normaliz tries to give a more economical presentation of H(t) as a quotient of two poly-
nomials. One should note that it is not clear what the most natural presentation of H(t) is in
general (when e > 1). We discuss this problem in [9, Section 4]. The examples 2.5 and 2.6.1,
may serve as an illustration.

A rational cone C and a grading together define the rational polytope Q =C∩A1 where A1 =
{x : degx = 1}. In this sense the Hilbert series is nothing but the Ehrhart series of Q. The
following description of the Hilbert function H(M,k) = #{x ∈M : degx = k} is equivalent to
the previous theorem:

Theorem 10. There exists a quasipolynomial q with rational coefficients, degree rankM− 1
and period π dividing e such that H(M,k) = q(k) for all q≥ 0.

The statement about the quasipolynomial means that there exist polynomials q( j), j = 0, . . . ,π−
1, of degree rankM−1 such that

q(k) = q( j)(k), j ≡ k (π),

and
q( j)(k) = q( j)

0 +q( j)
1 k+ · · ·+q( j)

r−1kr−1, r = rankM,

with coefficients q( j)
i ∈Q. It is not hard to show that in the case of affine monoids all compo-

nents have the same degree r−1 and the same leading coefficient:

qr−1 =
vol(Q)

(r−1)!
,

where vol is the lattice normalized volume of Q (a lattice simplex of smallest possible volume
has volume 1). The multiplicity of M, denoted by e(M) is (r−1)!qr−1 = vol(Q).

Suppose now that P is a rational polyhedron in Rd , L⊂Zd is an affine lattice, and we consider
N = P∩L as a module over M = recL(P). Then we must give up the condition that deg takes
the value 1 on gp(M) (see Section 6.13 for an example). But the Hilbert series

HN(t) = ∑
x∈N

tdegx

is well-defined, and the qualitative statement above about rationality remain valid. However,
in general the quasipolynomial gives the correct value of the Hilbert function only for k > r
where r is the degree of the Hilbert series as a rational function.

Let m be the gcd of the numbers degx, x ∈M. (For M = {0} we set m = 1.) Then we must
define e(M) = e′(M)/m where e′(M) is the multiplicity of M with respect to the normalized
grading deg/m. The multiplicity of N is given by

e(N) = mrank(N)e(M).

Since N may have generators in negative degrees, Normaliz shifts the degrees into Z+ by
subtracting a constant, called the shift. (The shift may also be positive.)
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A.8. The class group

A normal affine monoid M has a well-defined divisor class group. It is naturally isomorphic
to the divisor class group of K[M] where K is a field (or any unique factorization domain);
see [5, 4.F], and especially [5, 4.56]. The class group classifies the divisorial ideals up to
isomorphism. It can be computed from the standard embedding that sends an element x of
gp(M) to the vector σ(x) where σ is the collection of support forms σ1, . . . ,σs of M: Cl(M) =
Zs/σ(gp(M)). Finding this quotient amounts to an application of the Smith normal form to
the matrix of σ .

B. Annotated console output

B.1. Primal mode

With
./normaliz -ch example/A443

we get the following terminal output.

\.....|

Normaliz 3.2.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

January 2017 \.|

\|

************************************************************
Command line: -ch example/A443

Compute: HilbertBasis HilbertSeries

************************************************************
starting primal algorithm with full triangulation ...

Roughness 1

Generators sorted by degree and lexicographically

Generators per degree:

1: 48

Self explanatory so far (see Section 6.2 for the definition of roughness). Now the generators
are inserted.

Start simplex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 22 25 26 27 28 31 34

37 38 39 40 43 46

Normaliz starts by searching linearly independent generators with indices as small as possi-
ble. They span the start simplex in the triangulation. The remaining generators are inserted
successively. (If a generator does not increase the cone spanned by the previous ones, it is not
listed, but this does not happen for A443.)
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gen=17, 39 hyp, 4 simpl

We have now reached a cone with 39 support hyperplanes and the triangulation has 4 simplices
so far. We omit some generators until something interesting happens:

gen=35, 667 hyp, 85 pyr, 13977 simpl

In view of the number of simplices in the triangulation and the number of support hyperplanes,
Normaliz has decided to build pyramids and to store them for later triangulation.

gen=36, 723 hyp, 234 pyr, 14025 simpl

...

gen=48, 4948 hyp, 3541 pyr, 14856 simpl

All generetors have been processed now. Fortunately our cone is pointed:

Pointed since graded

Select extreme rays via comparison ... done.

Normaliz knows two methods for finding the extreme rays. Instead of “comparison” you
may see “rank”. Now the stored pyramids must be triangulated. They may produce not only
simplices, but also pyramids of higher level, and indeed they do so:

**************************************************
level 0 pyramids remaining: 3541

**************************************************

**************************************************
all pyramids on level 0 done!

**************************************************
level 1 pyramids remaining: 5935

**************************************************

**************************************************
all pyramids on level 1 done!

**************************************************
level 2 pyramids remaining: 1567

**************************************************
1180 pyramids remaining on level 2, evaluating 2503294 simplices

At this point the preset size of the evaluation buffer for simplices has been exceeded. Normaliz
stops the processing of pyramids, and empties the buffer by evaluating the simplices.

||||||||||||||||||||||||||||||||||||||||||||||||||

2503294 simplices, 0 HB candidates accumulated.

**************************************************
all pyramids on level 2 done!

**************************************************
level 3 pyramids remaining: 100

**************************************************
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**************************************************
all pyramids on level 3 done!

This is a small computation, and the computation of pyramids goes level by level without the
necessity to return to a lower level. But in larger examples the buffer for level n+ 1 may
be filled before level n is finished. Then it becomes necessary to go back. Some simplices
remaining in the buffer are now evaluated:

evaluating 150978 simplices

||||||||||||||||||||||||||||||||||||||||||||||||||

2654272 simplices, 0 HB candidates accumulated.

Adding 1 denominator classes... done.

Since our generators form the Hilbert basis, we do not collect any further candidates. If all
generators are in degree 1, we have only one denominator class in the Hilbert series, but
otherwise there may be many. The collection of the Hilbert series in denominator classes
reduces the computations of common denominators to a minimum.

Total number of pyramids = 14137, among them simplicial 2994

Some statistics of the pyramid decomposition.

------------------------------------------------------------

transforming data... done.

Our computation is finished.

A typical pair of lines that you will see for other examples is

auto-reduce 539511 candidates, degrees <= 1 3 7

reducing 30 candidates by 73521 reducers

It tells you that Normaliz has found a list of 539511 new candidates for the Hilbert basis, and
this list is reduced against itself (auto-reduce). Then the 30 old candidates are reduced against
the 73521 survivors of the auto-reduction.

B.2. Dual mode

Now we give an example of a computation in dual mode. It is started by the command

./normaliz -cid example/5x5

The option i is used to suppress the HSOP in the input file. The console output:

\.....|

Normaliz 3.2.0 \....|

\...|

(C) The Normaliz Team, University of Osnabrueck \..|

January 2017 \.|

\|
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************************************************************
Command line: -cid example/5x5

Compute: DualMode

No inequalities specified in constraint mode, using non-negative orthant.

************************************************************

Indeed, we have used only equations as the input.

************************************************************
computing Hilbert basis ...

==================================================

cut with halfspace 1 ...

Final sizes: Pos 1 Neg 1 Neutral 0

The cone is cut out from the space of solutions of the system of equations (in this case) by
successive intersections with halfspaces defined by the inequalities. After such an intersection
we have the positive half space, the “neutral” hyperplane and the negative half space. The final
sizes given are the numbers of Hilbert basis elements strictly in the positive half space, strictly
in the negative half space, and in the hyperplane. This pattern is repeated until all hyperplanes
have been used.

==================================================

cut with halfspace 2 ...

Final sizes: Pos 1 Neg 1 Neutral 1

We leave out some hyperplanes . . .

==================================================

cut with halfspace 20 ...

auto-reduce 1159 candidates, degrees <= 13 27

Final sizes: Pos 138 Neg 239 Neutral 1592

==================================================

cut with halfspace 21 ...

Positive: 1027 Negative: 367

..................................................

Final sizes: Pos 1094 Neg 369 Neutral 1019

Sometimes reduction takes some time, and then Normaliz may issue a message on “auto-
reduction” organized by degree (chosen for the algorithm, not defined by the given grading).
The line of dots is printed is the computation of new Hilbert basis candidates takes time, and
Normaliz wants to show you that it is not sleeping. Normaliz shows you the number of positive
and negative partners that must be pared produce offspring.

==================================================

cut with halfspace 25 ...

Positive: 1856 Negative: 653

..................................................

auto-reduce 1899 candidates, degrees <= 19 39
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Final sizes: Pos 1976 Neg 688 Neutral 2852

All hyperplanes have been taken care of.

Find extreme rays

Find relevant support hyperplanes

Well, in connection with the equations, some hyperplanes become superfluous. In the output
file Normaliz will list a minimal set of support hyperplanes that together with the equations
define the cone.

Hilbert basis 4828

The number of Hilbert basis elements computed is the sum of the last positive and neutral
numbers.

Find degree 1 elements

The input file contains a grading.

transforming data... done.

Our example is finished.

The computation of the new Hilbert basis after the intersection with the new hyperplane pro-
ceeds in rounds, and there can be many rounds . . . (not in the above example). then you can
see terminal output like

Round 100

Round 200

Round 300

Round 400

Round 500

C. Normaliz 2 input syntax

A Normaliz 2 input file contains a sequence of matrices. Comments or options are not allowed
in it. A matrix has the format

<m>

<n>

<x_1>

...

<x_m>

<type>

where <m> denotes the number of rows, <n> is the number of columns and <x_1>...<x_n> are
the rows with <m> entries each. All matrix types of Normaliz 3 are allowed (with Normaliz 3),
also grading and dehomogenization. These vectors must be encoded as matrices with 1 row.
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The optional output files of with suffix cst are still in this format. Just create one and inspect
it.

D. libnormaliz

The kernel of Normaliz is the C++ class library libnormaliz. It implements all the classes that are
necessary for the computations. The central class is Cone. It realizes the communication with the
calling program and starts the computations most of which are implemented in other classes. In the
following we describe th class Cone; other classes of libnormaliz may follow in the future.

Of course, Normaliz itself is the prime example for the use of libnormaliz, but it is rather complicated
because of the input and output it must handle. Therefore we have a added a simple example program
at the end of this introduction.

libnormaliz defines its own name space. In the following we assume that

using namespace std;

using namespace libnormaliz;

have been declared. It is clear that opening these name spaces is dangerous. In this documentation we
only do it to avoid constant repetition of std:: and libnormaliz::

D.1. Integer type as a template parameter

A cone can be constructed for two integer types, long long and mpz_class. It is reasonable to choose
mpz_class since the main computations will then be tried with long long and restarted with mpz_class

if long long cannot store the results. This internal change of integer type is not possible if the cone
is constructed for long long. (Nevertheless, the linear algebra routines can use mpz_class locally if
intermediate results exceed long long; have a look into matrix.cpp.)

Internally the template parameter is called Integer. In the following we assume that the integer type
has been fixed as follows:

typedef mpz_class Integer;

The internal passage from mpz_class to long long can be suppressed by

MyCone.deactivateChangeOfPrecision();

where we assume that MyCone has been constructed as described in the next section.

D.1.1. Alternative integer types

The predefined alternative to mpz_class is long long. It is possible to use libnormaliz with other
integer types than mpz_class or long long, but we have tested only these types.

In an alternative configuration you have to include libnormaliz-all.cpp. (In this case you do not
need to link libnormaliz.a). If you want to use other types, you probably have to implement some
conversion functions which you can find in integer.h. Namely the functions
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bool libnormaliz::try_convert(TypeA, TypeB);

// converts TypeB to TypeA, returns false if not possible

where one type is your type and the other is long, long long or mpz_class. Additionally, if your type
uses infinite precision (for example, it is some wrapper for GMP), you must also implement

template<> inline bool libnormaliz::using_GMP<YourType>() { return true; }

D.2. Construction of a cone

There is no default constructor for cones. The construction requires the specification of input data
consissting of one or more matrices and the input types they represent.

The term “matrix” stands for

vector<vector<Integer> >

The available input types (from libnormaliz.h) are defined as follows:

namespace Type {

enum InputType {

integral_closure,

polyhedron,

normalization,

polytope,

rees_algebra,

inequalities,

strict_inequalities,

signs,

strict_signs,

equations,

congruences,

inhom_inequalities,

dehomogenization,

inhom_equations,

inhom_congruences,

lattice_ideal,

grading,

excluded_faces,

lattice,

saturation,

cone,

offset,

vertices,

support_hyperplanes,

cone_and_lattice,

subspace
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};

} //end namespace Type

The input types are explained in Section 3. In certain environments it is not possible to use the enumer-
ation. Therefore we provide a function that converts a string into the corresponding input type:

Type::InputType to_type(const string& type_string)

The types grading, dehomoneization and offset must be encoded as matrices with a single row. We
come back to this point below.

The simplest constructor has the syntax

Cone<Integer>::Cone(InputType input_type, const vector< vector<Integer> >& Input)

and can be used as in the following example:

vector<vector <Integer> > Data = ...

Type::InputType type = cone;

Cone<Integer> MyCone = Cone<Integer>(type, Data);

For two and three pairs of type and matrix there are the constructors

Cone<Integer>::Cone(InputType type1, const vector< vector<Integer> >& Input1,

InputType type2, const vector< vector<Integer> >& Input2)

Cone<Integer>::Cone(InputType type1, const vector< vector<Integer> >& Input1,

InputType type2, const vector< vector<Integer> >& Input2,

InputType type3, const vector< vector<Integer> >& Input3)

If you have to combine more than three matrices, you can define a

map <InputType, vector< vector<Integer> > >

and use the constructor with syntax

Cone<Integer>::Cone(const map< InputType,

vector< vector<Integer> > >& multi_input_data)

The four constructors also exist in a variant that uses the libnormaliz type Matrix<Integer> instead
of vector< vector<Integer> > (see cone.h).

For the input of rational numbers we have all constructors also in variants that use mpq_class for the
input matrix, for example

Cone<Integer>::Cone(InputType input_type, const vector< vector<mpq_class> >& Input)

etc.

For convenience we provide the function

vector<vector<T> > to_matrix<Integer>(vector<T> v)

in matrix.h. It returns a matrix whose first row is v. A typical example:
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size_t dim = ...

vector<vector <Integer> > Data = ...

Type::InputType type = cone;

vector<Integer> total_degree(dim,1);

Type::InputType grad = grading;

Cone<Integer> MyCone = Cone<Integer>(type, Data,grad,to_matix(total_degree));

D.2.1. Setting the polynomial

The polynomial needed for integrals and weighted Ehrhart series must be passed to the cone after
construction:

void Cone<Integer>::setPolynomial(string poly)

D.3. Computations in a cone

Before starting a computation in a (previously constructed) cone, one must decide what should be
computed and in which way it should be computed. The computation goals and algorithmic variants
(see Section 4) are defined as follows (cone_property.h):

namespace ConeProperty {

enum Enum {

//

// goals that can be computed (or are defined by input data)

//

// matrix valued

Generators,

ExtremeRays,

VerticesOfPolyhedron,

SupportHyperplanes,

HilbertBasis,

ModuleGenerators,

Deg1Elements,

ModuleGeneratorsOverOriginalMonoid,

Sublattice,

ExcludedFaces,

OriginalMonoidGenerators,

MaximalSubspace,

Equations,

Congruences,

//vector valued

Grading,

Dehomogenization,

WitnessNotIntegrallyClosed,

// Cardinalities
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TriangulationSize,

// Integer valued,

TriangulationDetSum,

ReesPrimaryMultiplicity,

GradingDenom,

UnitGroupIndex,

InternalIndex,

ExternalIndex,

// rational valued

Multiplicity,

Integral, // new

VirtualMultiplicity, // new

// dimensions

RecessionRank,

AffineDim,

ModuleRank,

Rank,

EmbeddingDim,

// boolean valued

IsPointed,

IsDeg1ExtremeRays,

IsDeg1HilbertBasis,

IsIntegrallyClosed,

IsReesPrimary,

IsInhomogeneous,

// complex structures

Triangulation,

StanleyDec,

InclusionExclusionData,

ClassGroup,

IntegerHull,

ConeDecomposition,

HilbertSeries,

HilbertQuasiPolynomial,

WeightedEhrhartSeries, // new

WeightedEhrhartQuasiPolynomial, // new

//

// integer type for computations

//

BigInt,

//

// algorithmic variants

//

DefaultMode,

Approximate,

NoApproximation,
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BottomDecomposition,

NoBottomDec,

DualMode,

PrimalMode,

Symmetrize,

NoSymmetrization,

NoSubdivision,

NoNestedTri, // synonym for NoSubdivision

KeepOrder,

HSOP,

//

// checking properties of already computed data

// (cannot be used as a computation goal)

//

IsTriangulationNested,

IsTriangulationPartial,

EnumSize // this has to be the last entry, to get the number of entries in the enum

};

}

The class ConeProperties is based on this enumeration. Its instantiation are essentially boolean vectors
that can be accessed via the names in the enumeration. Instantiations of the class are used to set
computation goals and algorithmic variants and to check whether the goals have been reached. The
distinction between computation goals and algorithmic variants is not completely strict. See Section 4
for implications betwen some ConeProperties.

There exist versions of compute for up to 3 cone properties:

ConeProperties Cone<Integer>::compute(ConeProperty::Enum cp)

ConeProperties Cone<Integer>::compute(ConeProperty::Enum cp1,

ConeProperty::Enum cp2)

ConeProperties Cone<Integer>::compute(ConeProperty::Enum cp1,

ConeProperty::Enum cp2, ConeProperty::Enum cp3)

An example:

MyCone.compute(ConeProperty::HilberBasis, ConeProperty::Multiplicity)

If you want to specify more than 3 cone properties, you can define an instance of ConeProoerties

yourself and call

ConeProperties Cone<Integer>::compute(ConeProperties ToCompute)

An example:

ConeProperties Wanted;

Wanted.set(ConeProperty::Triangulation, ConeProperty::HilbertBasis);
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MyCone.compute(Wanted);

All get... functions that are listed in the next section, try to compute the data asked for if they have
not yet been computed. Unless you are interested a single result, we recommend to use compute since
the data asked for can then be computed in a single run. For example, if the Hilbert basis and the
multiplicity are wanted, then it would be a bad idea to call getHilbertBasis and getMultiplicity

consecutively. More importantly, however, is the lack of algorithmic variants if you use get... without
compute beforehand.

If DefaultMode is not set, then compute() will throw a NotComputableException so that compute()
cannot a value. In the presence of DefaultMode, the returned ConeProperties are those that have not
been computed.

Please inspect cone_property.cpp for the full list of methods implemented in the class ConeProperties.
Here we only mention the constructors

ConeProperties::ConeProperties(ConeProperty::Enum p1)

ConeProperties::ConeProperties(ConeProperty::Enum p1, ConeProperty::Enum p2)

ConeProperties::ConeProperties(ConeProperty::Enum p1, ConeProperty::Enum p2,

ConeProperty::Enum p3)

and the functions

ConeProperties& ConeProperties::set(ConeProperty::Enum p1, bool value)

ConeProperties& ConeProperties::set(ConeProperty::Enum p1, ConeProperty::Enum p2)

bool ConeProperties::test(ConeProperty::Enum Property) const

A string can be converted to a cone property and conversely:

ConeProperty::Enum toConeProperty(const string&)

const string& toString(ConeProperty::Enum)

D.4. Retrieving results

As remarked above, all get... functions that are listed below, try to compute the data asked for if they
have not yet been computed. As also remarked above, it is often better to use compute first.

The functions that return a matrix encoded as vector<vector<Integer> > have variants that return a
matrix encoded in the libnormaliz class Matrix<Integer>. These are not listed below; see cone.h.

D.4.1. Checking computations

In order to check whether a computation goal has been reached, one can use

bool Cone<Integer>::isComputed(ConeProperty::Enum prop) const
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for example

bool done=MyCone.isComputed(ConeProperty::HilbertBasis)

D.4.2. Rank, index and dimension

size_t Cone<Integer>::getEmbeddingDim()

size_t Cone<Integer>::getRank()

size_t Cone<Integer>::getRecessionRank()

long Cone<Integer>::getAffineDim()

size_t Cone<Integer>::getModuleRank()

Integer Cone<Integer>::getInternalIndex()

Integer Cone<Integer>::getUnitGroupIndex()

The internal index is only defined if original generators are defined. See Section D.4.14 for the external
index.

The last three functions return values that are only well-defined after inhomogeneous computations.

D.4.3. Support hyperplanes and constraints

const vector< vector<Integer> >& Cone<Integer>::getSupportHyperplanes()

size_t Cone<Integer>::getNrSupportHyperplanes()

The first function returns the support hyperplanes of the (homogenized) cone. The second function
returns the number of support hyperplanes.

Together with the equations and congruences the support hyperplanes can also be accessed by

map< InputType , vector< vector<Integer> > > Cone<Integer>::getConstraints ()

The map returned contains three pairs whose keys are

Type::inequalities

Type::equations

Type::congruences

Note that equations congruences can also be accessed via the coordinate transformation (to which
they belong internally). See Section D.4.14.

D.4.4. Extreme rays and vertices

const vector< vector<Integer> >& Cone<Integer>::getExtremeRays()

size_t Cone<Integer>::getNrExtremeRays()

const vector< vector<Integer> >& Cone<Integer>::getVerticesOfPolyhedron()

size_t Cone<Integer>::getNrVerticesOfPolyhedron()
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In the inhomogeneous case the first function returns the extreme rays of the recession cone, and the
second the vertices of the polyhedron. (Together they form the extreme rays of the homogenized cone.)

D.4.5. Generators

const vector< vector<Integer> >& Cone<Integer>::getOriginalMonoidGenerators()

size_t Cone<Integer>::getNrOriginalMonoidGenerators()

Note that original generators are not always defined. The system of generators of the cone that is used
in the computations and its cardinality are returned by

const vector< vector<Integer> >& Cone<Integer>::getGenerators()

size_t Cone<Integer>::getNrGenerators()

D.4.6. Lattice points in polytopes and elements of degree 1

const vector< vector<Integer> >& Cone<Integer>::getDeg1Elements()

size_t Cone<Integer>::getNrDeg1Elements()

D.4.7. Hilbert basis

In the nonpointed case we need the maximal linear subspace of the cone:

const vector< vector<Integer> >& Cone<Integer>::getMaximalSubspace()

size_t Cone<Integer>::getDimMaximalSubspace()

One of the prime results of Normaliz and its cardinality are returned by

const vector< vector<Integer> >& Cone<Integer>::getHilbertBasis()

size_t Cone<Integer>::getNrHilbertBasis()

Inhomogeneous case the functions refer to the the Hilbert basis of the recession cone. The module
generators of the lattice points in the polyhedron are accessed by

const vector< vector<Integer> >& Cone<Integer>::getModuleGenerators()

size_t Cone<Integer>::getNrModuleGenerators()

D.4.8. Module generators over original monoid

const vector< vector<Integer> >&

Cone<Integer>::getModuleGeneratorsOverOriginalMonoid()

size_t Cone<Integer>::getNrModuleGeneratorsOverOriginalMonoid()
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D.4.9. Grading and dehomogenization

vector<Integer> Cone<Integer>::getGrading()

Integer Cone<Integer>::getGradingDenom()

The second function returns the denominator of the grading.

vector<Integer> Cone<Integer>::getDehomogenization()

D.4.10. Enumerative data

mpq_class Cone<Integer>::getMultiplicity()

Don’t forget that the multiplicity is measured by a rational, not necessarily integral polytope. Therefore
it need not be an integer.

The Hilbert series is stored in a class of its own. It is retrieved by

const HilbertSeries& Cone<Integer>::getHilbertSeries()

It contains several data fields that can be accessed as follows (see hilbert_series.h):

const vector<mpz_class>& HilbertSeries::getNum() const;

const map<long, denom_t>& HilbertSeries::getDenom() const;

const vector<mpz_class>& HilbertSeries::getCyclotomicNum() const;

const map<long, denom_t>& HilbertSeries::getCyclotomicDenom() const;

const vector<mpz_class>& HilbertSeries::getHSOPNum() const;

const map<long, denom_t>& HilbertSeries::getHSOPDenom() const;

long HilbertSeries::getDegreeAsRationalFunction() const;

long HilbertSeries::getShift() const;

bool HilbertSeries::isHilbertQuasiPolynomialComputed() const;

vector< vector<mpz_class> > HilbertSeries::getHilbertQuasiPolynomial() const;

long HilbertSeries::getPeriod() const;

mpz_class HilbertSeries::getHilbertQuasiPolynomialDenom() const;

The first six functions refer to three representations of the Hilbert series as a rational function in the
variable t: the first has a denominator that is a product of polynomials (1− tg)e, the second has a
denominator that is a product of cylotomic polynomials. In the third case the denominator is determined
by the degrees of a homogeneous system of parameters (see Section 2.5). In all cases the numerators
are given by their coefficient vectors, and the denominators are lists of pairs (g,e) where in the second
case g is the order of the cyclotomic polynomial.

If you have already computed the Hilbert series without HSOP and you want it with HSOP afterwards,
the Hilbert series will simply be transformed, but Normaliz must compute the degrees for the denomi-
nator, and this may be a nontrivial computation.
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The degree as a rational function is of course independent of the chosen representation, but may be
negative, as well as the shift that indicates with which power of t the numerator tarts. Since the denom-
inator has a nonzero constant term in all cases, this is exactly the smallest degree in which the Hilbert
function has a nonzero value.

The Hilbert quasipolynomial is represented by a vector whose length is the period and whose entries are
itself vectors that represent the coefficients of the individual polynomials corresponding to the residue
classes modulo the period. These integers must be divided by the common denominator that is returned
by the last function.

For the input type rees_algebra we provide

Integer Cone<Integer>::getReesPrimaryMultiplicity()

D.4.11. Weighted Ehrhart series and integrals

The wighted Ehrhart series can be accessed by

const pair<HilbertSeries, mpz_class>& Cone<Integer>::getWeightedEhrhartSeries()

The second component of the pair is the denominator of the coefficients in the series numerator. Its
introduction was necessary since we wanted to keep integral coefficients for the numerator of a Hilbert
series. The numerator and the denominator of the first component of type HilbertSeries can be
accessed as usual, but one must not forget the denominator of the numerator coefficients. There is a
second way to access these data; see below.

The virtual multiplicity and the integral, respectively, are got by

mpq_class Cone<Integer>::getVirtualMultiplicity()

mpq_class Cone<Integer>::getIntegral()

Actually the cone saves these data in a special container of class IntegrationData (defined in Hilbert_sries.h).
It is accessed by

IntegrationData& Cone<Integer>::getIntData()

The three get functions above are only shortcuts for the access via getIntData():

string IntegrationData::getPolynomial() const

long IntegrationData::getDegreeOfPolynomial() const

bool IntegrationData::isPolynomialHomogeneous() const

const vector<mpz_class>& IntegrationData::getNum_ZZ() const

mpz_class IntegrationData::getNumeratorCommonDenom() const

const map<long, denom_t>& IntegrationData::getDenom() const

const vector<mpz_class>& IntegrationData::getCyclotomicNum_ZZ() const

const map<long, denom_t>& IntegrationData::getCyclotomicDenom() const

bool IntegrationData::isWeightedEhrhartQuasiPolynomialComputed() const

void IntegrationData::computeWeightedEhrhartQuasiPolynomial()
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vector< vector<mpz_class> > IntegrationData::getWeightedEhrhartQuasiPolynomial()

mpz_class IntegrationData::getWeightedEhrhartQuasiPolynomialDenom() const

mpq_class IntegrationData::getVirtualMultiplicity() const

mpq_class IntegrationData::getIntegral() const

The first three functions refer to the polynomial defining the integral or weighted Ehrhart series.

The computation of these data is controlled by the corresponding ConeProperty.

D.4.12. Triangulation and disjoint decomposition

The triangulation, the size and the sum of the determinants are returned by

const vector< pair<vector<key_t>,Integer> >& Cone<Integer>::getTriangulation()

size_t Cone<Integer>::getTriangulationSize()

Integer Cone<Integer>::getTriangulationDetSum()

See Section 6.9 for the interpretation of these data. The first component of the pair is the vector of
indices of the simplicial cones in the triangulation. Note that the indices are here counted from 0
(whereas they start from 1 in the tri file). The second component is the determinant.

The type of triangulation can be retrieved by

bool Cone<Integer>::isTriangulationNested()

bool Cone<Integer>::isTriangulationPartial()

If the disjoint decomposition has been computed, one gets the 0/1 vectors describing the facets to be
removed

const vector<vector<bool> >& Cone<Integer>::getOpenFacets()

D.4.13. Stanley decomposition

The Stanley decomposition is stored in a list whose entries correspond to the simplicial cones in the
triangulation:

const list< STANLEYDATA<Integer> >& Cone<Integer>::getStanleyDec()

Each entry is a record of type STANLEYDATA defined as follows:

struct STANLEYDATA {

vector<key_t> key;

Matrix<Integer> offsets;

};

The key has the same interpretation as for the triangulation, namely as the vector of indices of the
generators of the simplicial cone (counted from 0). The matrix contains the coordinate vectors of the
offsets of the components of the decomposition that belong to the simplicial cone defined by the key.
See Section 6.10 for the interpretation. The format of the matrix can be accessed by the following
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functions of class Matrix<Integer>:

size_t nr_of_rows() const

size_t nr_of_columns() const

The entries are accessed in the same way as those of vector<vector<Integer> >.

D.4.14. Coordinate transformation

The coordinate transformation from the ambient lattice to the sublattice generated by the Hilbert basis
and the basis of the maximal subspace can be returned as follows:

const Sublattice_Representation<Integer>& Cone<Integer>::getSublattice()

An object of type Sublattice_Representation models a sequence of Z-homomorphisms

Zr ϕ−→ Zn π−→ Zr

with the following property: there exists c ∈ Z, c 6= 0, such that π ◦ϕ = c · idZr . In particular ϕ is
injective. One should view the two maps as a pair of coordinate transformations: ϕ is determined by
a choice of basis in the sublattice U = ϕ(Zr), and it allows us to transfer vectors from U ∼= Zr to the
ambient lattice Zn. The map π is used to realize vectors from U as linear combinations of the given
basis of U ∼= Zr: after the application of π one divides by c. (If U is a direct summand of Zn, one can
choose c = 1, and conversely.) Normaliz considers vectors as rows of matrices. Therefore ϕ is given
as an r×n-matrix and π is given as an n× r matrix.

The data just described can be accessed as follows (sublattice_representation.h). For space rea-
sons we omit the class specification Sublattice_Representation<Integer>::

const vector<vector<Integer> >& getEmbedding() const

const vector<vector<Integer> >& getProjection() const

Integer getAnnihilator() const

Here “Embedding” refers to ϕ and “Projection” to π (though π is not always surjective). The “Annihi-
lator” is the number c above. (It annihilates Zr modulo π(Zn).)

The numbers n and r are accessed in this order by

size_t getDim() const

size_t getRank() const

The external index, namely the order of the torsion subgroup of Zn/U , is returned by

mpz_class getExternalIndex() const

Very often ϕ and ψ are identity maps, and this property can be tested by

bool IsIdentity()const

The constraints computed by Normaliz are “hidden” in the sublattice representation. They van be
accessed by

const vector<vector<Integer> >& getEquations() const
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const vector<vector<Integer> >& getCongruences() const

But see Section D.4.3 above for a dmore direct access.

D.4.15. Class group

vector<Integer> Cone<Integer>::getClassGroup()

The return value is to be interpreted as follows: The entry for index 0 is the rank of the class group.
The remaining entries contain the orders of the summands in a direct sum decomposition of the torsion
subgroup.

D.4.16. Integer hull

For the computation of the integer hull an auxiliary cone is constructed. A reference to it is returned by

Cone<Integer>& Cone<Integer>::getIntegerHullCone() const

For example, the support hyperplanes of the integer hull can be accessed by

MyCone.getIntegerHullCone().getSupportHyperplanes()

D.4.17. Excluded faces

Before using the excluded faces Normaliz makes the collection irredundant by discarding those that
are contained in others. The irredundant collection (given by hyperplanes that intersect the cone in the
faces) and its cardinality are returned by

const vector< vector<Integer> >& Cone<Integer>::getExcludedFaces()

size_t Cone<Integer>::getNrExcludedFaces()

For the computation of the Hilbert series the all intersections of the excluded faces are computed, and
for each resulting face the weight with which it must be counted is computed. These data can be
accessed by

const vector< pair<vector<key_t>,long> >&

Cone<Integer>::getInclusionExclusionData()

The first component of each pair contains the indices of the generators (counted from 0) that lie in the
face and the second component is the weight.

D.4.18. Boolean valued results

All the “questions” to the cone that can be asked by the boolean valued functions in this section start a
computation if the answer is not yet known.

The first, The question
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bool Cone<Integer>::isIntegrallyClosed()

does not trigger a computation of the full Hilbert basis. The computation stops as soon as the answer
can be given, and this is the case when an element in the integral closure has been found that is not in
the original monoid. Such an element is retrieved by

vector<Integer> Cone<Integer>::getWitnessNotIntegrallyClosed()

As discussed in Section 6.8.3 it can sometimes be useful to ask

bool Cone<Integer>::isPointed()

before a more complex computation is started.

The next two functions answer the question whether the Hilbert basis or at least the extreme rays live
in degree 1.

bool Cone<Integer>::isDeg1ExtremeRays()

bool Cone<Integer>::isDeg1HilbertBasis()

Finally we have

bool Cone<Integer>::isInhomogeneous()

bool Cone<Integer>::isReesPrimary()

isReesPrimary() checks whether the ideal defining the Rees algebra is primary to the irrelevant max-
imal ideal.

D.5. Interruption and exception handling

D.5.1. Exceptions

All exceptions that are thrown in libnormaliz are derived from the abstract class NormalizException
that itself is derived from std::exception:

class NormalizException: public std::exception

The following exceptions must be caught by the calling program:

class ArithmeticException: public NormalizException

class BadInputException: public NormalizException

class NotComputableException: public NormalizException

class FatalException: public NormalizException

class NmzCoCoAException: public NormalizException

class InterruptException: public NormalizException

The ArithmeticException leaves libnormaliz if a nonrecoverable overflow occurs (it is also used
internally for the change of integer type). This should not happen for cones of integer type mpz_class,
unless it is caused by the attempt to create a data structure of illegal size or by a bug in the program. The
BadInputException is thrown whenever the input is inconsistent; the reasons for this are manifold. The
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NotComputableException is thrown if a computation goal cannot be reached. The FatalException

should never appear. It covers error situations that can only be caused by a bug in the program. At
many places libnormaliz has assert verifications built in that serve the same purpose.

There are two more exceptions for the communication within libnormaliz that should not leave it:

class NonpointedException: public NormalizException

class NotIntegrallyClosedException: public NormalizException

The InterruptException is discussed in the next section.

D.5.2. Interruption

In order to find out if the user wants to interrupt the program, the functions in libnormaliz test the
value of the global variable

bool nmz_interrupted

If it is found to be true, an InterruptException is thrown. Ihis interrupt lraves libnormaliz, so
that the calling program can process it. The Cone still exists, and the data computed in it can still be
accessed. Moreover, compute can again be applied to it.

The calling program must take care to catch the signal caused by Ctrl-C and to set nmz_interrupted=true.

D.6. Control of terminal output

By using

bool setVerboseDefault(bool v)

one can control the verbose output of libnormaliz. The default value is false. This is a global setting
that effects all cones constructed afterwards. However, for every cone one can set an individual value
of verbose by

bool Cone<Integer>::setVerbose(bool v)

Both functions return the previous value.

The default values of verbose output and error output are std::cout and std::cerr. These values can
be changed by

void setVerboseOutput(std::ostream&)

void setErrorOutput(std::ostream&)

D.7. A simple program

The example program is a simplified version of the program on which the experiments for the paper
“Quantum jumps of normal polytopes” by W. Bruns, J. Gubeladze and M. Michałek, arXiv:1504.01036
are based. Its goal is to find a maximal normal lattice polytope P in the following sense: there is no
normal lattice polytope Q ⊃ P that has exactly one more lattice point than P. ‘Normal” means in this
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context that the Hilbert basis of the cone over P is given by the lattice points of P, considered as degree
1 elements in the cone.

The program generates normal lattice simplices and checks them for maximality. The dimension is set
in the program, as well as the bound for the random coordinates of the vertices.

Let us have a look at source/maxsimplex/maxsimplex.cpp. First the more or less standard preamble:

#include <stdlib.h>

#include <vector>

#include <fstream>

#include <omp.h>

using namespace std;

#include "libnormaliz/libnormaliz.h"

#include "libnormaliz/cone.h"

#include "libnormaliz/vector_operations.h"

#include "libnormaliz/cone_property.h"

#include "libnormaliz/integer.h"

using namespace libnormaliz;

Since we want to perform a high speed experiment which is not expected to be arithmetically demand-
ing, we choose 64 bit integers:

typedef long long Integer;

The first routine finds a random normal simplex of dimension dim. The coordinates of the vertices are
integers between 0 and bound. We are optimistic that such a simplex can be found, and this is indeed
no problem in dimension 4 or 5.

Cone<Integer> rand_simplex(size_t dim, long bound){

vector<vector<Integer> > vertices(dim+1,vector<Integer> (dim));

while(true){ // an eternal loop ...

for(size_t i=0;i<=dim;++i){

for(size_t j=0;j<dim;++j)

vertices[i][j]=rand()%(bound+1);

}

Cone<Integer> Simplex(Type::polytope,vertices);

// we must check the rank and normality

if(Simplex.getRank()==dim+1 && Simplex.isDeg1HilbertBasis())

return Simplex;

}

vector<vector<Integer> > dummy_gen(1,vector<Integer>(1,1));

// to make the compiler happy

return Cone<Integer>(Type::cone,dummy_gen);

}

We are looking for a normal polytope Q ⊃ P with exactly one more lattice point. The potential extra
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lattice points z are contained in the matrix jump_cands. There are two obstructions for Q = conv(P,z)
to be tested: (i) z is the only extra lattice point and (ii) Q is normal. It makes sense to test them in this
order since most of the time condition (i) is already violated and it is much faster to test.

bool exists_jump_over(Cone<Integer>& Polytope,

const vector<vector<Integer> >& jump_cands){

vector<vector<Integer> > test_polytope=Polytope.getExtremeRays();

test_polytope.resize(test_polytope.size()+1);

for(size_t i=0;i<jump_cands.size();++i){

test_polytope[test_polytope.size()-1]=jump_cands[i];

Cone<Integer> TestCone(Type::cone,test_polytope);

if(TestCone.getNrDeg1Elements()!=Polytope.getNrDeg1Elements()+1)

continue;

if(TestCone.isDeg1HilbertBasis())

return true;

}

return false;

}

In order to make the (final) list of candidates z as above we must compute the widths of P over its
support hyperplanes.

vector<Integer> lattice_widths(Cone<Integer>& Polytope){

if(!Polytope.isDeg1ExtremeRays()){

cerr<< "Cone in lattice_widths is not defined by lattice polytope"<< endl;

exit(1);

}

vector<Integer> widths(Polytope.getNrExtremeRays(),0);

for(size_t i=0;i<Polytope.getNrSupportHyperplanes();++i){

for(size_t j=0;j<Polytope.getNrExtremeRays();++j){

// v_scalar_product is a useful function from vector_operations.h

Integer test=v_scalar_product(Polytope.getSupportHyperplanes()[i],

Polytope.getExtremeRays()[j]);

if(test>widths[i])

widths[i]=test;

}

}

return widths;

}

int main(int argc, char* argv[]){

time_t ticks;

srand(time(&ticks));

cout << "Seed " <<ticks << endl; // we may want to reproduce the run
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size_t polytope_dim=4;

size_t cone_dim=polytope_dim+1;

long bound=6;

vector<Integer> grading(cone_dim,0);

// at some points we need the explicit grading

grading[polytope_dim]=1;

size_t nr_simplex=0; // for the progress report

Since the computations are rather small, we suppress parallelization (except for one step below).

while(true){

#ifdef _OPENMP

omp_set_num_threads(1);

#endi

Cone<Integer> Candidate=rand_simplex(polytope_dim,bound);

nr_simplex++;jordan

if(nr_simplex%1000 ==0)

cout << "simplex " << nr_simplex << endl;

Maximality is tested in 3 steps. Most often there exists a lattice point z of height 1 over P. If so, then
conv(P,z) contains only z as an extra lattice point and it is automatically normal. In order to find such
a point we must move the support hyperplanes outward by lattice distance 1.

vector<vector<Integer> > supp_hyps_moved=Candidate.getSupportHyperplanes();

for(size_t i=0;i<supp_hyps_moved.size();++i)

supp_hyps_moved[i][polytope_dim]+=1;

Cone<Integer> Candidate1(Type::inequalities,supp_hyps_moved,

Type::grading,to_matrix(grading));

if(Candidate1.getNrDeg1Elements()>Candidate.getNrDeg1Elements())

continue; // there exists a point of height 1

Among the polytopes that have survived the height 1 test, most nevertheless have suitable points z close
to them, and it makes sense not to use the maximum possible height immediately. Note that we must
now test normality explicitly.

cout << "No ht 1 jump"<< " #latt " << Candidate.getNrDeg1Elements() << endl;

// move the hyperplanes further outward

for(size_t i=0;i<supp_hyps_moved.size();++i)

supp_hyps_moved[i][polytope_dim]+=polytope_dim;

Cone<Integer> Candidate2(Type::inequalities,supp_hyps_moved,

Type::grading,to_matrix(grading));

cout << "Testing " << Candidate2.getNrDeg1Elements()

<< " jump candidates" << endl; // including the lattice points in P

if(exists_jump_over(Candidate,Candidate2.getDeg1Elements()))
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continue;

Now we can be optimistic that a maximal polytope P has been found, and we test all candidates z that
satisfy the maximum possible bound on their lattice distance to P.

cout << "No ht <= 1+dim jump" << endl;

vector<Integer> widths=lattice_widths(Candidate);

for(size_t i=0;i<supp_hyps_moved.size();++i)

supp_hyps_moved[i][polytope_dim]+=

-polytope_dim+(widths[i])*(polytope_dim-2);

The computation may become arithmetically critical at this point. Therefore we use mpz_class for our
cone. The conversion to and from mpz_class is done by routines contained in convert.h.

vector<vector<mpz_class> > mpz_supp_hyps;

convert(mpz_supp_hyps,supp_hyps_moved);

vector<mpz_class> mpz_grading=convertTo<vector<mpz_class> >(grading);

The computation may need some time now. Therefore we allow a little bit of parallelization.

#ifdef _OPENMP

omp_set_num_threads(4);

#endif

Since P doesn’t have many vertices (even if we use these routines for more general polytopes than
simplices), we don’t expect too many vertices for the enlarged polytope. In this situation it makes
sense to set the algorithmic variant Approximate.

Cone<mpz_class> Candidate3(Type::inequalities,mpz_supp_hyps,

Type::grading,to_matrix(mpz_grading));

Candidate3.compute(ConeProperty::Deg1Elements,ConeProperty::Approximate);

vector<vector<Integer> > jumps_cand; // for conversion from mpz_class

convert(jumps_cand,Candidate3.getDeg1Elements());

cout << "Testing " << jumps_cand.size() << " jump candidates" << endl;

if(exists_jump_over(Candidate, jumps_cand))

continue;

Success!

cout << "Maximal simplex found" << endl;

cout << "Vertices" << endl;

Candidate.getExtremeRaysMatrix().pretty_print(cout); // a goody from matrix.h

cout << "Number of lattice points = " << Candidate.getNrDeg1Elements();

cout << " Multiplicity = " << Candidate.getMultiplicity() << endl;

} // end while

} // end main

For the compilation of maxsimplex.cpp we have added a Makefile. Running the program needs a little
bit of patience. However, within a few hours a maximal simplex should have emerged. From a log file:
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simplex 143000

No ht 1 jump #latt 9

Testing 22 jump candidates

No ht 1 jump #latt 10

Testing 30 jump candidates

No ht 1 jump #latt 29

Testing 39 jump candidates

No ht <= 1+dim jump

Testing 173339 jump candidates

Maximal simplex found

Vertices

1 3 5 3 1

2 3 0 3 1

3 0 5 5 1

5 2 2 1 1

6 5 6 2 1

Number of lattice points = 29 Multiplicity = 275

E. PyNormaliz

Before you can install PyNormaliz (written by Sebastian Gutsche), you must install Normaliz
with shared libraries via make install (using cmake or autotools). PyNormaliz expects the
installed files in a standard location.

For PyNormaliz itself type

python setup.py install

or
pip install PyNormaliz

at a command prompt. Depending on your python version you might want to write python3

instead.

For a brief introduction please consult the PyNormaliz tutorial on the Normaliz web site.

F. QNormaliz

The variant QNormaliz of Normaliz can use coefficients from subfields of R, for example from
real algebraic extensions of Q. It is clear that the computations are then restricted to those
that do not depend on lattice data. At present QNormaliz is restricted to the computations of
support hyperplanes/extreme rays and to triangulations. Instead of the template name Integer
(see Appendix D) it uses Number to empphasize the difference.
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The included implementation specializes Number to mpq_class. This only serves as a demon-
stration example. From the pratical viewpoint it is superfluous since Normaliz can (now)
process rational input data. Nevertheless have a look at the examples in Qexample.

F.1. Prerequisites

In order to specialize Number to your field of coefficients you must of course make it available
via a suitable class library in the compilation process.

In the code of QNormaliz the following adaptations are necessary:

1. In Qnormaliz.cpp replace mpq_class in the definition of Cone.

2. In libQnoraliz-templated.cpp you must do the same replacement.

3. If your number type has a convenient conversion to string, modify the specialization of
the templated function toString in Qinteger.h. Otherwise remove the specialization
for mpq_class.

4. In Qvector_operations.cpp you must replace the definition of v_simplify by a ver-
sion for your numbers.

The last point is extremely important since the coefficients of the linear forms representing
the support hyperplanes or the vectors representing the extreme rays tend to explode rapidly
in size if not kept under control. For mpq_class this means that we multiply vectors by the
least common denominator of the components and then extract the gcd of the numerators. (If
you really need a demonstration of what happens otherwise, switch off the function by an
immediate return, and run QNormaliz on the example small in example.)

F.2. Restrictions

The following input types are NOT allowed in QNormaliz:

lattice congruences grading

cone_and_lattice inhom_congruences offset

Inhomogeneous types are allowed. Also saturation is allowed. It must be intepreted as a
generating set for a subspace that is intersected with all the objects defined by other input
items.

The only computation goals and algorithmic variants allowed are:

Generators ExtremeRays VerticesOfPolyhedron MaximalSubspace

SupportHyperplanes Equations Triangulation ConeDecomposition

Dehomogenization Rank EmbeddingDim Sublattice

KeepOrder IsPointed IsInhomogeneous DefaultMode

It may seem paradoxical that Sublattice appears here. As in the true lattice case, the Sublattice
Representation is the coordinate transformation used by QNormaliz. Over a field F there is
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no need for the annihilator c, and one simply has a pair of linear maps Fr→ Fd → Fr whose
composition is the identity of Fr. Of course, congruences and external index make no sense
anymore.

Moreover, the original monoid and any data referring to it are not defined.

Implicit or explicit DefaultMode is interpreted as SupportHyperplanes.

F.3. Results

In the output file we use the same terminology as in that of Normaliz, for example, “basis ele-
ments of sublattice”. In QNormaliz these vectors form a basis of the vector subspace spanned
by the cone that is computed. No reference to a sublattice is implied.

As far as possible, we apply v_simplify to the computation results. Note that it is not neces-
sarily applied to all results. For example the generators of the cone (contained in the file with
suffix tgn or returned by getGenerators) are not necessarily simplified. (In particular, they
need not be identical to those computed by Normaliz (if applicable to the input), but can differ
from them by order and rational factors.)

As for Normaliz, for dehomogenization one must divide a vector by its value under the linear
form that we call dehomogenization. Since fractions can be formed now, Normaliz could
divide by the dehomogenization, but it does not do it in favor of the output in simplified form.

Note that there is no way for QNormaliz to define an invariant volume function on subspaces.
(In Normaliz the situation is different since determinants of invertible matrices over Z are
equal to ±1.) Therefore QNormaliz does not define multiplicities. Together with triangula-
tions, it computes determinants of the vectors spanning the simplicial cones. They are defined
relative to the choice of basis shown as “basis of sublattice” if the cone is not fulldimensional.
In the fulldimensional case QNormaliz uses the basis of unit vectors.

F.4. Installation

The standard autotools build system automatically builds and installs QNormaliz as well.

As for Normaliz and QNormaliz one can use the “classical” Makefile. See INSTALL in the
directory source (without Q!).

Moreover, QNormaliz can also be built by cmake. Simply follow the steps in Section 10.5
after having made a directory BUILD_QNMZ (for example) in the Normaliz directory. Then
go to it and say cmake ../Qsource, followed by make and make install. With the de-
fault settings, libQnormaliz will be installed in /usr/local, subdirectories bin, lib and
include/libQnormaliz.
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