Introduction to Numerical Algebraic Geometry What is possible in Macaulay2?

Anton Leykin
Georgia Tech

Applied Macaulay2 tutorials, Georgia Tech, July 2017

Polynomial homotopy continuation

- Target system: n equations in n variables,

$$
F(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), \ldots, f_{n}(\boldsymbol{x})\right)=\mathbf{0}
$$

where $f_{i} \in R=\mathbb{C}[\boldsymbol{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ for $i=1, \ldots, n$.

- Start system: n equations in n variables:

$$
G(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{n}(\boldsymbol{x})\right)=\mathbf{0},
$$

such that it is easy to solve.

- Homotopy: for $\gamma \in \mathbb{C} \backslash\{0\}$ consider

$$
H(\boldsymbol{x}, t)=(1-t) G(\boldsymbol{x})+\gamma t F(\boldsymbol{x}), t \in[0,1] .
$$

Numerical linear algebra under the hood: from polynomial systems to ODEs

target
$f_{1}=x_{1}^{4} x_{2}+5 x_{1}^{2} x_{2}^{3}+x_{1}^{3}-4$ $f_{2}=x_{1}^{2}-x_{1} x_{2}+x_{2}-8$
\{target solutions $\}$
start
$g_{1}=x_{1}^{5}-1$
$g_{2}=x_{2}^{2}-1$
\{start solutions $\}$

$$
H(\boldsymbol{x}, t)=0 \text { implies } \frac{d \boldsymbol{x}}{d t}=-\left(\frac{\partial H}{\partial \boldsymbol{x}}\right)^{-1} \frac{\partial H}{\partial t}
$$

Continuation in a nutshell: lifting paths from B to V.

- The covering map, $\pi: V \rightarrow B$, from total space, the set of pairs (problem, solution),

$$
V=\left\{(a, x) \in B \times \mathbb{C} \mid x^{3}-a=0\right\}
$$

to base space, a parameterized space of problems,

$$
\begin{aligned}
B & =\left\{a \in \mathbb{C} \mid x^{3}-a=0 \text { has } 3 \text { solutions }\right\} \\
& =\mathbb{C} \backslash D, \text { where } D=\{0\} \text { is the branch locus. }
\end{aligned}
$$

- Target system F and start system G are points in the base space B.
- Usually it is necessary to randomize a path in B to avoid the branch locus D.
- All ingredients in this picture are up to discussion. How to construct a suitable family? How to choose a start system?

Global picture

Optimal homotopy:

- the continuation paths are regular;
- the homotopy establishes a bijection between the start and target solutions.

Possible singular scenarios:

non-generic

diverging paths

multiple solutions

Global picture

Optimal homotopy:

- the continuation paths are regular;
- the homotopy establishes a bijection between the start and target solutions.

Possible singular scenarios:

non-generic

diverging paths

multiple solutions

- Randomization:

For all but finite number of $\gamma \in \mathbb{C}$ the homotopy

$$
H(\boldsymbol{x}, t)=(1-t) G(\boldsymbol{x})+\gamma t F(\boldsymbol{x}) .
$$

is regular for $0 \leq t<1$.

- Book: Sommese and Wampler, The numerical solution of systems of polynomials (2005).
- Software:

```
- PHCpack (Verschelde);
- HOM4PS (group of T.Y.Li);
- Bertini (group of Sommese);
- NAG4M2: Numerical Algebraic Geometry for Macaulay2 (L.).
- New framework: MonodromySolver (Duff, Hill, Jensen, Lee, L., and
Sommars).
Poster by Kisun Lee next Monday (at reception)
Talk by Tim Duff next Friday (10:30-10:55, Skiles 255)
```

- Randomization:

For all but finite number of $\gamma \in \mathbb{C}$ the homotopy

$$
H(\boldsymbol{x}, t)=(1-t) G(\boldsymbol{x})+\gamma t F(\boldsymbol{x}) .
$$

is regular for $0 \leq t<1$.

- Book: Sommese and Wampler, The numerical solution of systems of polynomials (2005).
- Software:
- PHCpack (Verschelde);
- HOM4PS (group of T.Y.Li);
- Bertini (group of Sommese);
- NAG4M2: Numerical Algebraic Geometry for Macaulay2 (L.).
- New framework: MonodromySolver (Duff, Hill, Jensen, Lee, L., and Sommars).
Poster by Kisun Lee next Monday (at reception)
Talk by Tim Duff next Friday (10:30-10:55, Skiles 255)

Higher-dimensional solution sets

- Let $I=\left(f_{1}, \ldots, f_{N}\right)$ be an ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- Goal: Understand the variety

$$
X=\mathbb{V}(I)=\left\{\boldsymbol{x} \in \mathbb{C}^{n} \mid \forall f \in I, f(\boldsymbol{x})=0\right\} .
$$

- A witness set for an equidimensional component Y of X :
- a generic "slicing" plane L with $\operatorname{dim} L=\operatorname{codim} Y$
- witness points $w_{Y, L}=Y \cap L$
- (generators of I)

Numerical irreducible decomposition

- Homotopy mapping $w_{Y, L} \rightarrow w_{Y, L^{\prime}}$:

$$
H_{L, L^{\prime}, \gamma}(\boldsymbol{x}, t)=\binom{f(\boldsymbol{x})}{(1-t) L(\boldsymbol{x})+\gamma t L^{\prime}(\boldsymbol{x})}, t \in[0,1] .
$$

- Monodromy action: a permutation on $w_{Y, L}$ is produced by homotopy $H_{L, L^{\prime}, \gamma}$ followed by $H_{L^{\prime}, L, \gamma^{\prime}}$ for random $\gamma, \gamma^{\prime} \in \mathbb{C}$.
- Irreducible decomposition: a partition of the witness set $w_{Y, L}$ stable under this action.

Dependencies

Macaulay2 core implements its own fast homotopy continuation. The interfaces are optional!

Related numerical packages

Classical numerical AG functionality:

- core dependencies: NAGtypes and SLPexpressions
- Macaulay dual spaces: NumericalHilbert (Krone)
- interfaces: PHCpack (Verschelde, Gross, Petrovic) and Bertini (Rodriguez, Gross, Bates, L.)
Applications and advanced functionality:
- MonodromySolver (Duff, Hill, Jensen, Lee, L., Sommars)
- NumericalCertification (Lee)
- NumericalImplicitization (Chen, Kileel)
- NumericalSchubertCalculus (L., Verschelde, del Campo, Sottile, Vakil)
- ...

Kinematics: robot systems.

Tropical geometry: tropical curves

Enumerative AG: Schubert calculus

