The degree of SO(*n*)

Robert Krone

UC Davis

July 27, 2017

joint with: Madeline Brandt (UC Berkeley), DJ Bruce (U of Wisconsin), Taylor Brysiewicz (Texas A&M), Elina Robeva (MIT).

Degree of a variety

Let X be an affine algebraic variety of pure dimension d over algebraically-closed field K embedded in K^N .

Definition

The *degree* of *X*, deg *X* is the number of points in $X \cap \mathcal{L}$ where \mathcal{L} is a generic codimension-*d* affine linear space.

$$\deg X = \#(X \cap \mathcal{L}).$$

For radical ideal I = I(X), say deg $I := \deg X$.

- If dim X = 0 then deg X = #(X).
- If X is a hypersurface with $I(X) = \langle f \rangle$, deg $X = \deg f$.
- **Bézout Bound:** If X is a complete intersection of hypersurfaces X_1, \ldots, X_r then deg $X \leq \deg X_1 \cdots \deg X_r$.

Computing degree symbolically

Definition

For ideal $I \subseteq R = K[x_1, ..., x_N]$, let $R_n \subseteq R$ denote the polynomials of degree at most *n*. The Hilbert function of R/I is $HF_{R/I} : \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ defined by

 $\mathsf{HF}_{R/I}(n) = \dim_{\mathcal{K}}(R/I) \cap R_n.$

The Hilbert function $HF_{R/I}(n)$ is polynomial for n >> 0. This polynomial is the *Hilbert polynomial* of R/I, denoted $HP_{R/I}(n)$.

Theorem

Suppose the Hilbert polynomial of R/I(X) is

$$\mathsf{HP}_{R/\mathsf{I}(X)}(n) = a_d n^d + \cdots + a_0.$$

Then

$$\dim X = d,$$

$$\deg X = d!a_d.$$

(From this fact we extend the definition of deg *I* to non-radical ideals and ideals over non-algebraically-closed fields.)

The Hilbert polynomial can be computed from a Gröbner basis.

Varieties O(n) and SO(n)

- O(n) is the subset of GL(\mathbb{R}^n) preserving the standard inner product.
- SO(*n*) is the subset of O(*n*) also preserving orientation.

Both O(n) and SO(n) are algebraic groups: both groups and algebraic varieties.

$$O(n) = \{A \in \mathsf{Mat}_{n \times n} \mid A^T A = \mathsf{Id}\} \subseteq \mathbb{R}^{n^2},$$
$$a_{i,1}a_{j,1} + \dots + a_{i,n}a_{j,n} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \text{ for all } i \leq j.$$

The equations for SO(n) are the same but adding the degree-*n* equation

$$det(A) = 1.$$

Varieties O(n) and SO(n)

- O(n) is the subset of GL(\mathbb{R}^n) preserving the standard inner product.
- SO(*n*) is the subset of O(*n*) also preserving orientation.

Both O(n) and SO(n) are algebraic groups: both groups and algebraic varieties.

$$O(n) = \{A \in \mathsf{Mat}_{n \times n} \mid A^T A = \mathsf{Id}\} \subseteq \mathbb{R}^{n^2},$$
$$a_{i,1}a_{j,1} + \dots + a_{i,n}a_{j,n} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \text{ for all } i \leq j.$$

The equations for SO(n) are the same but adding the degree-*n* equation

$$det(A) = 1.$$

It's convenient to work in an algebraically-closed field \mathbb{C} . From here, take O(n) and SO(n) to be the Zariski closures of the above real varieties in \mathbb{C}^{n^2} , which does not change the degree.

Some basic facts about O(n) and SO(n)

Fact

- SO(n) is a smooth, irreducible variety.
- O(n) has two disjoint irreducible components, each isomorphic to SO(n).

Some basic facts about O(n) and SO(n)

Fact

- SO(*n*) is a smooth, irreducible variety.
- O(n) has two disjoint irreducible components, each isomorphic to SO(n).

Question

What is the degree of SO(n)? $(\deg O(n) = 2 \deg SO(n).)$

Symbolic computation of $\deg SO(n)$

Symbolic algorithm:

n	Symbolic	H.C.	Monodromy	Formula
2	2			
3	8			
4	40			
5	384			
6	-			
7	-			
8	-			
9	-			

Limitations:

- Gröbner basis time grows badly in number of variables, which is n^2 .
- We could only reach *n* = 5.
- For *n* even or odd we get only 2 data points each.

Computing degree numerically

Suppose *X* is a complete intersection, $I(X) = \langle f_1, \ldots, f_r \rangle$ where $r = \operatorname{codim} X$. Choose $\ell_1, \ldots, \ell_{N-r}$ random affine linear functionals on \mathbb{C}^N .

$$\deg X = \# \mathbf{V}(f_1, \ldots, f_r, \ell_1, \ldots, \ell_{N-r}).$$

Numerical algebraic geometry can count the solutions. The *total degree homotopy* system is

$$H(t) := tF + \gamma(1-t)G$$

with

•
$$F = (f_1, ..., f_r, \ell_1, ..., \ell_{N-r}),$$

•
$$G = (x_1^{d_1} - 1, \dots, x_r^{d_r} - 1, x_{r+1} - 1, \dots, x_N - 1)$$
 where $d_i = \deg f_i$ (e.g.).

• $\gamma \in \mathbb{C} \setminus \{0\}$ chosen randomly.

We know all $d_1 \cdots d_r$ solutions to H(0) = G. Track solutions of H(t) as t goes from 0 to 1. Count how many don't go to ∞ .

Numerical computation of deg SO(n)

Homotopy continuation algorithm:

- Recall O(n) is a complete intersection of n(n+1)/2 quadratics.
- Begin with a "start system" consisting n(n + 1)/2 quadratics and n(n 1)/2 linear equations, with known solutions. E.g:

$$\begin{cases} a_{i,j}^2 - 1 & \text{for } i \le j \\ a_{i,j} & \text{for } i > j \end{cases}$$

Continuously deform start system to system for O(n) ∩ L. Track each solution.
Limitations:

- Number of paths is $2^{n(n+1)/2}$. For n = 6 this is $2^{21} = 2097152$.
- We expect deg O(6) to be much smaller than 2²¹.

Mixed volume

Definition

For $f \in \mathbb{C}[x_1, \ldots, x_N]$, $f = c_{\alpha_1} x^{\alpha_1} + \cdots + c_{\alpha_p} x^{\alpha_p}$ with $\alpha_1, \ldots, \alpha_p \in \mathbb{Z}_{\geq 0}^N$ and $c_{\alpha_i} \neq 0$.

The Newton polytope of f is $conv(\alpha_1, ..., \alpha_p)$.

BKK bound: For $I(X) = \langle f_1, \ldots, f_N \rangle$ a complete intersection and A_i the Newton polytope of f_i

$$\#(X \cap (\mathbb{C}^*)^N) \leq \mathsf{MV}(A_1, \ldots, A_N)$$

where MV is the mixed volume.

- The mixed volume can be much smaller than the Bézout bound.
- This suggests a more efficient homotopy start system: Polynomials with the same Newton polytopes as (*f*₁,...,*f*_N).
- $MV(A_1, \ldots, A_N)$ can be hard to compute, but we don't need to!
- For O(*n*), this strategy didn't help us.

Homotopy continuation results

n	Symbolic	H.C.	Monodromy	Formula
2	2	2		
3	8	8		
4	40	40		
5	384	384		
6	-	-		
7	-	-		
8	-	-		
9	-	-		

Homotopy continuation computations were performed with the NumericalAlgebraicGeometry package for Macaulay2 and BERTINI.

Numerical monodromy computation of $\deg SO(n)$

Monodromy algorithm:

- Start with a subset of the solutions to $SO(n) \cap \mathcal{L}$ (perhaps just one point x_0).
- Moving *L* through a loop in the Grassmannian back to *L* permutes the points in SO(*n*) ∩ *L*.

- Tracking known solutions often leads to new ones.
- Repeat this process to populate all of $SO(n) \cap \mathcal{L}$.
- A solution can't leave its irreducible component, but recall SO(*n*) is irreducible.

Monodromy results

n	Symbolic	H.C.	Monodromy	Formula
2	2	2	2	
3	8	8	8	
4	40	40	40	
5	384	384	384	
6	-	-	4768	
7	-	-	111616	
8	-	-	-	
9	-	-	-	

Monodromy computations were performed in ${\tt Macaulay2}$ using the code of Duff-Hill-Jensen-Lee-Leykin-Sommars.

Kazarnovskij's formula

Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If $\rho: G \to GL(V)$ is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

where W(G) is the Weyl group, e_i are Coxeter exponents, C_V is the convex hull of the weights, and $\check{\alpha}_i$ are the coroots.

- representation: ρ : SO(n) → GL(Cⁿ) is the standard embedding.
- kernel: ker ρ is trivial.
- rank: r = n/2 or (n-1)/2 depending on *n* even or odd.
- dimension: $m = \binom{n}{2}$.
- size of Weyl group: $|W(SO(n))| = r!2^{r-1}$ or $r!2^r$.
- Coxeter exponents: e₁,..., er = 1, 3, ..., 2r − 3, r − 1 or 1, 3, ..., 2r − 1.
- weights: $\pm e_1, \ldots, \pm e_r$.
- coroots: $\{\check{\alpha}_1, \dots, \check{\alpha}_l\} = \{x_i^2 \pm x_j^2\}_{1 \le i < j \le r} \text{ or } \{x_i^2 \pm x_j^2\}_{1 \le i < j \le r} \cup \{x_i^2\}_{1 \le i \le r}.$

Degree formulas

v

Proposition (Recht-Robeva)

$$\begin{split} &\deg \mathrm{SO}(2r) = \frac{\binom{2r}{2}!}{r!2^{r-1}(r-1)!^2 \prod_{k=1}^{r-1}(2k-1)!^2} \int_{C_V} \left(\prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \right) dv, \\ &\deg \mathrm{SO}(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^r \prod_{k=1}^r (2k-1)!^2} \int_{C_V} \left(\prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 \right) dv. \end{split}$$

Degree formulas

Proposition (Recht-Robeva)

$$deg \, \mathrm{SO}(2r) = \frac{\binom{2r}{2}!}{r!2^{r-1}(r-1)!^2 \prod_{k=1}^{r-1}(2k-1)!^2} \int_{C_V} \left(\prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \right) dv,$$

$$deg \, \mathrm{SO}(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^r \prod_{k=1}^r (2k-1)!^2} \int_{C_V} \left(\prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 \right) dv.$$

where C_V is the cross polytope $C_V = \operatorname{conv}(\pm e_1, \dots, \pm e_r) \subseteq \mathbb{R}^r.$

To evaluate these integrals:

- C_V has a standard simplices Δ_r in each orthant, and the integrand is even in each x_i .
- Rewrite the integrand as a sum of monomials with identity:

$$\prod_{1 \leq i < j \leq r} (y_j - y_i) = \sum_{\sigma \in S_r} \operatorname{sgn}(\sigma) \prod_{i=1}^r y_i^{\sigma(i)-1}.$$

• Monomials integrate as
$$\int_{\Delta_r} x_1^{a_1} \cdots x_r^{a_r} dx = \frac{1}{(r + \sum a_i)!} \prod_{i=1}^r a_i!$$

Theorem

$$\deg \operatorname{SO}(n) = 2^{n-1} \det \left[\binom{2n-2i-2j}{n-2i} \right]_{1 \le i,j \le \lfloor \frac{n}{2} \rfloor}$$

Example

$$\begin{split} &\text{deg SO}(4) = 2^{4-1} \,\text{det} \begin{bmatrix} \binom{4}{2} & \binom{2}{2} \\ \binom{2}{0} & \binom{6}{0} \end{bmatrix} = 40. \\ &\text{deg SO}(5) = 2^{5-1} \,\text{det} \begin{bmatrix} \binom{6}{3} & \binom{4}{3} \\ \binom{4}{1} & \binom{2}{1} \end{bmatrix} = 384. \end{split}$$

Theorem

$$\deg \operatorname{SO}(n) = 2^{n-1} \det \left[\binom{2n-2i-2j}{n-2i} \right]_{1 \le i,j \le \lfloor \frac{n}{2} \rfloor}$$

Example

$$\begin{split} & \text{deg SO}(4) = 2^{4-1} \, \text{det} \begin{bmatrix} \binom{4}{2} & \binom{2}{2} \\ \binom{2}{0} & \binom{6}{0} \end{bmatrix} = 40. \\ & \text{deg SO}(5) = 2^{5-1} \, \text{det} \begin{bmatrix} \binom{6}{3} & \binom{4}{3} \\ \binom{4}{1} & \binom{2}{1} \end{bmatrix} = 384. \end{split}$$

n	Symbolic	H.C.	Monodromy	Formula
2	2	2	2	2
3	8	8	8	8
4	40	40	40	40
5	384	384	384	384
6	-	-	4768	4768
7	-	-	111616	111616
8	-	-	-	3433600
9	-	-	-	196968448

Question

How many real points can SO(n) $\cap \mathcal{L}$ have (for \mathcal{L} real)?

- SO(2) is a circle, so SO(n) $\cap \mathcal{L}$ can have 0 or 2 real points.
- The number of real points is always even.
- The number is "usually" zero since $SO(n) \cap \mathbb{R}^{n^2}$ is compact.

Taylor Brysiewicz computed the number of real points of $SO(n) \cap \mathcal{L}$ many randomly chosen \mathcal{L} by:

- using the monodromy algorithm to compute all solutions,
- using alphaCertify to determine which solutions are real.

Experimental results

Frequency of each number of points in $SO(n) \cap \mathcal{L}$:

#(Real Solutions)	<i>n</i> = 3	<i>n</i> = 4	n = 5
0	340141	95566	1739
2	500250	56795	776
4	655908	69501	659
6	152075	82065	633
8	17622	83635	602
10	0	64685	627
12	0	40326	653
14	0	19839	665
16	0	8499	694
18	0	2884	677
20	0	992	677
22	0	265	727
24	0	82	663
26	0	17	645
28	0	3	554
30	0	1	479
32	0	0	440
34	0	0	367
36	0	0	288
38	0	0	255
40	0	0	175
42	0	0	134
44	0	0	82
46	0	0	59
48	0	0	39
50	0	0	28
52	0	0	18
54	0	0	15
56	0	0	5
58	0	0	4
60	0	0	3
62	0	0	2
64	0	0	0
66	0	0	1