The degree of SO(n)

Robert Krone

UC Davis

July 27, 2017
joint with:
Madeline Brandt (UC Berkeley),
DJ Bruce (U of Wisconsin), Taylor Brysiewicz (Texas A\&M), Elina Robeva (MIT).

Degree of a variety

Let X be an affine algebraic variety of pure dimension d over algebraically-closed field K embedded in K^{N}.

Definition

The degree of $X, \operatorname{deg} X$ is the number of points in $X \cap \mathcal{L}$ where \mathcal{L} is a generic codimension- d affine linear space.

$$
\operatorname{deg} X=\#(X \cap \mathcal{L})
$$

For radical ideal $I=\mathbf{I}(X)$, say $\operatorname{deg} I:=\operatorname{deg} X$.

- If $\operatorname{dim} X=0$ then $\operatorname{deg} X=\#(X)$.
- If X is a hypersurface with $\mathbf{I}(X)=\langle f\rangle$, $\operatorname{deg} X=\operatorname{deg} f$.
- Bézout Bound: If X is a complete intersection of hypersurfaces X_{1}, \ldots, X_{r} then $\operatorname{deg} X \leq \operatorname{deg} X_{1} \cdots \operatorname{deg} X_{r}$.

Computing degree symbolically

Definition

For ideal $I \subseteq R=K\left[x_{1}, \ldots, x_{N}\right]$, let $R_{n} \subseteq R$ denote the polynomials of degree at most n. The Hilbert function of R / I is $\mathrm{HF}_{R / I}: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ defined by

$$
\operatorname{HF}_{R / I}(n)=\operatorname{dim}_{K}(R / I) \cap R_{n} .
$$

The Hilbert function $\mathrm{HF}_{R / /}(n)$ is polynomial for $n \gg 0$. This polynomial is the Hilbert polynomial of R / I, denoted $\mathrm{HP}_{R / I}(n)$.

Theorem

Suppose the Hilbert polynomial of $R / \mathbf{I}(X)$ is

$$
\operatorname{HP}_{R / l(X)}(n)=a_{d} n^{d}+\cdots+a_{0}
$$

Then

$$
\begin{gathered}
\operatorname{dim} X=d \\
\operatorname{deg} X=d!a_{d}
\end{gathered}
$$

(From this fact we extend the definition of deg / to non-radical ideals and ideals over non-algebraically-closed fields.)
The Hilbert polynomial can be computed from a Gröbner basis.

Varieties $\mathrm{O}(n)$ and $\mathrm{SO}(n)$

- $\mathrm{O}(n)$ is the subset of $\mathrm{GL}\left(\mathbb{R}^{n}\right)$ preserving the standard inner product.
- $\mathrm{SO}(n)$ is the subset of $\mathrm{O}(n)$ also preserving orientation.

Both $\mathrm{O}(n)$ and $\mathrm{SO}(n)$ are algebraic groups: both groups and algebraic varieties.

$$
\begin{gathered}
\mathrm{O}(n)=\left\{A \in \operatorname{Mat}_{n \times n} \mid A^{T} A=\mathrm{Id}\right\} \subseteq \mathbb{R}^{n^{2}}, \\
a_{i, 1} a_{j, 1}+\cdots+a_{i, n} a_{j, n}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} \quad \text { for all } i \leq j .\right.
\end{gathered}
$$

The equations for $\mathrm{SO}(n)$ are the same but adding the degree- n equation

$$
\operatorname{det}(A)=1 .
$$

Varieties $\mathrm{O}(n)$ and $\mathrm{SO}(n)$

- $\mathrm{O}(n)$ is the subset of $\mathrm{GL}\left(\mathbb{R}^{n}\right)$ preserving the standard inner product.
- $\mathrm{SO}(n)$ is the subset of $\mathrm{O}(n)$ also preserving orientation.

Both $\mathrm{O}(n)$ and $\mathrm{SO}(n)$ are algebraic groups: both groups and algebraic varieties.

$$
\begin{gathered}
\mathrm{O}(n)=\left\{A \in \operatorname{Mat}_{n \times n} \mid A^{T} A=\mathrm{Id}\right\} \subseteq \mathbb{R}^{n^{2}}, \\
a_{i, 1} a_{j, 1}+\cdots+a_{i, n} a_{j, n}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} \quad \text { for all } i \leq j .\right.
\end{gathered}
$$

The equations for $\mathrm{SO}(n)$ are the same but adding the degree- n equation

$$
\operatorname{det}(A)=1 .
$$

It's convenient to work in an algebraically-closed field \mathbb{C}. From here, take $\mathrm{O}(n)$ and $\mathrm{SO}(n)$ to be the Zariski closures of the above real varieties in $\mathbb{C}^{n^{2}}$, which does not change the degree.

Some basic facts about $\mathrm{O}(n)$ and $\mathrm{SO}(n)$

Fact

$$
\operatorname{dim} O(n)=\operatorname{dim} S O(n)=\frac{n(n-1)}{2}
$$

Fact

$O(n)$ is a complete intersection of $\frac{n(n+1)}{2}$ quadratics.

Fact

- $\mathrm{SO}(n)$ is a smooth, irreducible variety.
- $\mathrm{O}(n)$ has two disjoint irreducible components, each isomorphic to $\mathrm{SO}(n)$.

Some basic facts about $\mathrm{O}(n)$ and $\mathrm{SO}(n)$

Fact

$$
\operatorname{dim} O(n)=\operatorname{dim} S O(n)=\frac{n(n-1)}{2}
$$

Fact

$O(n)$ is a complete intersection of $\frac{n(n+1)}{2}$ quadratics.

Fact

- $\mathrm{SO}(n)$ is a smooth, irreducible variety.
- $\mathrm{O}(n)$ has two disjoint irreducible components, each isomorphic to $\mathrm{SO}(n)$.

Question

What is the degree of $\mathrm{SO}(n)$? $\quad(\operatorname{deg} \mathrm{O}(n)=2 \operatorname{deg} \mathrm{SO}(n)$.

Symbolic computation of deg SO(n)

Symbolic algorithm:

\mathbf{n}	Symbolic	H.C.	Monodromy	Formula
2	2			
3	8			
4	40			
5	384			
6	-			
7	-			
8	-			
9	-			

Limitations:

- Gröbner basis time grows badly in number of variables, which is n^{2}.
- We could only reach $n=5$.
- For n even or odd we get only 2 data points each.

Computing degree numerically

Suppose X is a complete intersection, $\mathbf{I}(X)=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ where $r=\operatorname{codim} X$. Choose $\ell_{1}, \ldots, \ell_{N-r}$ random affine linear functionals on \mathbb{C}^{N}.

$$
\operatorname{deg} X=\# \mathbf{V}\left(f_{1}, \ldots, f_{r}, \ell_{1}, \ldots, \ell_{N-r}\right)
$$

Numerical algebraic geometry can count the solutions. The total degree homotopy system is

$$
H(t):=t F+\gamma(1-t) G
$$

with

- $F=\left(f_{1}, \ldots, f_{r}, \ell_{1}, \ldots, \ell_{N-r}\right)$,
- $G=\left(x_{1}^{d_{1}}-1, \ldots, x_{r}^{d_{r}}-1, x_{r+1}-1, \ldots, x_{N}-1\right)$ where $d_{i}=\operatorname{deg} f_{i}$ (e.g.),
- $\gamma \in \mathbb{C} \backslash\{0\}$ chosen randomly.

We know all $d_{1} \cdots d_{r}$ solutions to $H(0)=G$. Track solutions of $H(t)$ as t goes from 0 to 1 . Count how many don't go to ∞.

Numerical computation of deg SO(n)

Homotopy continuation algorithm:

- Recall $\mathrm{O}(n)$ is a complete intersection of $n(n+1) / 2$ quadratics.
- Begin with a "start system" consisting $n(n+1) / 2$ quadratics and $n(n-1) / 2$ linear equations, with known solutions. E.g:

$$
\left\{\begin{array}{l}
a_{i, j}^{2}-1 \quad \text { for } i \leq j \\
a_{i, j} \quad \text { for } i>j
\end{array}\right.
$$

- Continuously deform start system to system for $\mathrm{O}(n) \cap \mathcal{L}$. Track each solution. Limitations:
- Number of paths is $2^{n(n+1) / 2}$. For $n=6$ this is $2^{21}=2097152$.
- We expect deg $\mathrm{O}(6)$ to be much smaller than 2^{21}.

Mixed volume

Definition

For $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$,

$$
f=c_{\alpha_{1}} x^{\alpha_{1}}+\cdots+c_{\alpha_{p}} x^{\alpha_{p}}
$$

with $\alpha_{1}, \ldots, \alpha_{p} \in \mathbb{Z}_{\geq 0}^{N}$ and $c_{\alpha_{i}} \neq 0$.
The Newton polytope of f is $\operatorname{conv}\left(\alpha_{1}, \ldots, \alpha_{p}\right)$.
BKK bound: For $\mathbf{I}(X)=\left\langle f_{1}, \ldots, f_{N}\right\rangle$ a complete intersection and A_{i} the Newton polytope of f_{i}

$$
\#\left(X \cap\left(\mathbb{C}^{*}\right)^{N}\right) \leq \operatorname{MV}\left(A_{1}, \ldots, A_{N}\right)
$$

where MV is the mixed volume.

- The mixed volume can be much smaller than the Bézout bound.
- This suggests a more efficient homotopy start system: Polynomials with the same Newton polytopes as $\left(f_{1}, \ldots, f_{N}\right)$.
- $\operatorname{MV}\left(A_{1}, \ldots, A_{N}\right)$ can be hard to compute, but we don't need to!
- For $O(n)$, this strategy didn't help us.

Homotopy continuation results

\mathbf{n}	Symbolic	H.C.	Monodromy	Formula
2	2	2		
3	8	8		
4	40	40		
5	384	384		
6	-	-		
7	-	-		
8	-	-		
9	-	-		

Homotopy continuation computations were performed with the
NumericalAlgebraicGeometry package for Macaulay2 and BERTINI.

Numerical monodromy computation of deg $\mathrm{SO}(n)$

Monodromy algorithm:

- Start with a subset of the solutions to $\mathrm{SO}(n) \cap \mathcal{L}$ (perhaps just one point x_{0}).
- Moving \mathcal{L} through a loop in the Grassmannian back to \mathcal{L} permutes the points in $\mathrm{SO}(n) \cap \mathcal{L}$.

- Tracking known solutions often leads to new ones.
- Repeat this process to populate all of $\mathrm{SO}(n) \cap \mathcal{L}$.
- A solution can't leave its irreducible component, but recall $\mathrm{SO}(n)$ is irreducible.

Monodromy results

\mathbf{n}	Symbolic	H.C.	Monodromy	Formula
2	2	2	2	
3	8	8	8	
4	40	40	40	
5	384	384	384	
6	-	-	4768	
7	-	-	111616	
8	-	-	-	
9	-	-	-	

Monodromy computations were performed in Macaulay2 using the code of Duff-Hill-Jensen-Lee-Leykin-Sommars.

Kazarnovskij's formula

Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(\mathrm{V})$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{V}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, e_{i} are Coxeter exponents, C_{V} is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

- representation: $\rho: \mathrm{SO}(n) \rightarrow \mathrm{GL}\left(\mathbb{C}^{n}\right)$ is the standard embedding.
- kernel: $\operatorname{ker} \rho$ is trivial.
- rank: $r=n / 2$ or $(n-1) / 2$ depending on n even or odd.
- dimension: $m=\binom{n}{2}$.
- size of Weyl group: $|W(\mathrm{SO}(n))|=r!2^{r-1}$ or $r!2^{r}$.
- Coxeter exponents: $e_{1}, \ldots, e_{r}=1,3, \ldots, 2 r-3, r-1$ or $1,3, \ldots, 2 r-1$.
- weights: $\pm e_{1}, \ldots, \pm e_{r}$.
- coroots: $\left\{\check{\alpha}_{1}, \ldots, \check{\alpha}_{l}\right\}=\left\{x_{i}^{2} \pm x_{j}^{2}\right\}_{1 \leq i<j \leq r}$ or $\left\{x_{i}^{2} \pm x_{j}^{2}\right\}_{1 \leq i<j \leq r} \cup\left\{x_{i}^{2}\right\}_{1 \leq i \leq r}$.

Degree formulas

Proposition (Recht-Robeva)

$$
\begin{aligned}
\operatorname{deg} \mathrm{SO}(2 r) & =\frac{\binom{2 r}{2}!}{r!2^{r-1}(r-1)!^{r-1}(2 k-1)!_{k=1}^{2}} \int_{C_{V}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2}\right) d v, \\
\operatorname{deg} \mathrm{SO}(2 r+1) & =\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2}} \int_{C_{V}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v .
\end{aligned}
$$

where C_{V} is the cross polytope $C_{V}=\operatorname{conv}\left(\pm e_{1}, \ldots, \pm e_{r}\right) \subseteq \mathbb{R}^{r}$.

Degree formulas

Proposition (Recht-Robeva)

$$
\begin{aligned}
& \operatorname{deg} \mathrm{SO}(2 r)=\frac{\binom{2 r}{2}!}{r!2^{r-1}(r-1)!^{2}} \prod_{k=1}^{r-1}(2 k-1)!^{2} \\
& \int_{C_{v}}\left(\prod_{1 \leq i<i \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2}\right) d v, \\
& \operatorname{deg} \mathrm{SO}(2 r+1)=\frac{\left(\begin{array}{c}
2 r+1
\end{array}\right)!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2}} \int_{C_{v}}\left(\prod_{1 \leq i<i \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v .
\end{aligned}
$$

where C_{V} is the cross polytope $C_{V}=\operatorname{conv}\left(\pm e_{1}, \ldots, \pm e_{r}\right) \subseteq \mathbb{R}^{r}$.
To evaluate these integrals:

- C_{V} has a standard simplices Δ_{r} in each orthant, and the integrand is even in each x_{i}.
- Rewrite the integrand as a sum of monomials with identity:

$$
\prod_{1 \leq i<j \leq r}\left(y_{j}-y_{i}\right)=\sum_{\sigma \in S_{r}} \operatorname{sgn}(\sigma) \prod_{i=1}^{r} y_{i}^{\sigma(i)-1}
$$

- Monomials integrate as $\int_{\Delta_{r}} x_{1}^{a_{1}} \cdots x_{r}^{a_{r}} d x=\frac{1}{\left(r+\sum a_{i}\right)!} \prod_{i=1}^{r} a_{i}!$.

Theorem

$$
\operatorname{deg} \mathrm{SO}(n)=2^{n-1} \operatorname{det}\left[\binom{2 n-2 i-2 j}{n-2 i}\right]_{1 \leq i, j \leq\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Example

$$
\begin{aligned}
& \operatorname{deg} S O(4)=2^{4-1} \operatorname{det}\left[\begin{array}{ll}
4 \\
2 \\
2
\end{array}\right)\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right) \\
& \left.\operatorname{deg} S O(5)=2^{5-1} \operatorname{det}\left[\begin{array}{ll}
6 \\
3 \\
3 \\
1
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
1 \\
1
\end{array}\right)\right]=384 \text {. }
\end{aligned}
$$

Theorem

$$
\operatorname{deg} \operatorname{SO}(n)=2^{n-1} \operatorname{det}\left[\binom{2 n-2 i-2 j}{n-2 i}\right]_{1 \leq i, j \leq\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Example

$$
\begin{aligned}
& \operatorname{deg} S O(4)=2^{4-1} \operatorname{det}\left[\begin{array}{ll}
4 \\
2 \\
2
\end{array}\right)\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right) \\
& \left.\operatorname{deg} S O(5)=2^{5-1} \operatorname{det}\left[\begin{array}{ll}
6 \\
3 \\
3 \\
1
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right)\right]=384 \text {. }
\end{aligned}
$$

\mathbf{n}	Symbolic	H.C.	Monodromy	Formula
2	2	2	2	2
3	8	8	8	8
4	40	40	40	40
5	384	384	384	384
6	-	-	4768	4768
7	-	-	111616	111616
8	-	-	-	3433600
9	-	-	-	196968448

Real points in $\mathrm{SO}(n)$

Question

How many real points can $\mathrm{SO}(n) \cap \mathcal{L}$ have (for \mathcal{L} real)?

- $\mathrm{SO}(2)$ is a circle, so $\mathrm{SO}(n) \cap \mathcal{L}$ can have 0 or 2 real points.
- The number of real points is always even.
- The number is "usually" zero since $\mathrm{SO}(n) \cap \mathbb{R}^{n^{2}}$ is compact.

Taylor Brysiewicz computed the number of real points of $\mathrm{SO}(n) \cap \mathcal{L}$ many randomly chosen \mathcal{L} by:

- using the monodromy algorithm to compute all solutions,
- using alphaCert ify to determine which solutions are real.

Experimental results

Frequency of each number of points in $\mathrm{SO}(n) \cap \mathcal{L}$:

\#(Real Solutions)	$n=3$	$n=4$	$n=5$
0	340141	95566	1739
2	500250	56795	776
4	655908	69501	659
6	152075	82065	633
8	17622	83635	602
10	0	64685	627
12	0	40326	653
14	0	19839	665
16	0	8499	694
18	0	2884	677
20	0	992	677
22	0	265	727
24	0	82	663
26	0	17	645
28	0	3	554
30	0	1	479
32	0	0	440
34	0	0	367
36	0	0	288
38	0	0	255
40	0	0	175
42	0	0	134
44	0	0	82
46	0	0	59
48	0	0	39
50	0	0	28
52	0	0	18
54	0	0	15
56	0	0	5
58	0	0	4
60	0	0	3
62	0	0	2
64	0	0	0
66	0	0	1

