Applied M2 Tutorials - Degree Exercises

July 27, 2017

1. Using Macaulay2, compute the degree of the variety in \mathbb{C}^{4} parametrized by

$$
\begin{aligned}
\phi & : \mathbb{C}^{2} \rightarrow \mathbb{C}^{4} \\
(s, t) & \mapsto\left(s, t, s^{2}, s t\right)
\end{aligned}
$$

first using a symbolic method and then a numerical method.
2. Let X be an affine variety in \mathbb{C}^{n} with dimension d. Let a be the lead coefficient of the Hilbert polynomial of $K\left[x_{1}, \ldots, x_{n}\right] / \mathbf{I}(X)$. Prove

$$
d!a=\#(X \cap L)
$$

where L is a generic affine linear space with $\operatorname{dim} L=n-d$.
3. Considering $\mathrm{O}(n)$ as the affine variety cut out by the relation $M^{T} M=\mathrm{Id}$, what is the Bézout bound on the degree of $\mathrm{O}(n)$? What is the mixed-volume bound?
4. The Grassmannian $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ can be considered as an affine variety in $\mathbb{C}^{\binom{n}{k}}$ under the Plücker embedding. Compute the degree of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ for whatever values of n and k you can.
5. The group of symplectic matrices $\operatorname{Sp}(n)$ can be considered as an affine variety in the space of all real $2 n \times 2 n$ matrices. Compute the degree of $\operatorname{Sp}(n)$ for whatever values of n you can. Find a formula in n for the degree of $\operatorname{Sp}(n)$.

