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Risk Factors for Coronary Heart Disease

Data collected from a sample of 1841 workers employed in the Czech auto-
motive industry.

S : smoked

B: systolic blood pressure was less than 140 mm

H: family history of coronary heart disease

L: ratio of beta to alpha lipoproteins less than 3

Random vector X = (S ,B,H, L) with each risk factor a binary variable, so
X has a state space of cardinality 16:

pijk` = prob(S = i ,B = j ,H = k , L = `) i , j , k , ` ∈ {0, 1}
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Risk Factors for Coronary Heart Disease

H L B S : no S : yes

neg < 3 < 140 297 275
≥ 140 231 121

≥ 3 < 140 150 191
≥ 140 155 161

pos < 3 < 140 36 37
≥ 140 34 30

≥ 3 < 140 32 36
≥ 140 26 29

Data:
(uijk` : i , j , k , ` ∈ {0, 1}) = (u0000, u0001, . . . , u1111) = (297, 275, . . . , 29)

Given the observed table, what is the probability distribution p̂ = (p̂ijk`)
that “best” explains the data ?
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Maximum Likelihood Estimation

Pre-specified probability model M (a subset of all possible probability dis-
tributions).

Choose p̂ from M.

Example (Binary Four-Cycle)

S

B H

L

aij , bjk , ck`, di` parameters for i , j , k , ` ∈ {0, 1} and let
pijk` = aijbjkck`di`

M is the image of this parametrization

Distributions in M have the property that S and H are independent
given B and L. Also, B and L are independent given S and H.
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Maximum Likelihood Estimation

• Likelihood function
`u(p) =

∏
i ,j ,k,`

p
uijk`
ijk`

Look for the maximizer p̂ = (p̂ijk`)!

maximize `u(p) = pu00000000p
u0001
0001 · · · p

u1111
1111 subject to p = (pijk`) ∈M

• The optimal solution p̂ is the MLE, the maximum likelihood estimate (of
the data u for the model M).

Example (computed with M2)

p̂ = ( 0.15293342, 0.089760679, 0.021266977, 0.015778191,

0.12976986, 0.076165372, 0.020853199, 0.015471205,

0.13533793, 0.11789409, 0.018820142, 0.0207235,

0.083859917, 0.073051125, 0.01347576, 0.014838619 ).
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Computing the Maximum Likelihood Estimate

In general for many models there is no analytic formula for the MLE.

Finding a local maximum of the likelihood function by numerical hill
climbing-type methods

Typical problems: not finding global maximum, slow convergence...
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Algebraic Statistics Mantra

Many classes of parametrized probability models are algebraic varieties.

Example

ψ : (C∗)16 −→ (C∗)16 given by

(a00, a01, a10, a11, b00, . . . , c00, . . . , d00, . . .) 7→ (p0000, p0001, . . . , p1111)

where pijk` = aijbjkck`di` for i , j , k , ` ∈ {0, 1}.

• V = ψ((C∗)16) ⊂ C16 ⊂ P15 is a projective (toric) variety.

• M = V .
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Probability Models as Algebraic Varieties

Example (Equations for the Binary Four-Cycle)

The projective variety V corresponding to the binary four-cycle defined by

〈 p1011p1110 − p1010p1111, p0111p1101 − p0101p1111, p1001p1100 − p1000p1101, p0110p1100 − p0100p1110,

p0011p1001 − p0001p1011, p0011p0110 − p0010p0111, p0001p0100 − p0000p0101, p0010p1000 − p0000p1010,

p0100p0111p1001p1010 − p0101p0110p1000p1011, p0010p0101p1011p1100 − p0011p0100p1010p1101,

p0001p0110p1010p1101 − p0010p0101p1001p1110, p0001p0111p1010p1100 − p0011p0101p1000p1110,

p0000p0011p1101p1110 − p0001p0010p1100p1111, p0000p0111p1001p1110 − p0001p0110p1000p1111,

p0000p0111p1011p1100 − p0011p0100p1000p1111, p0000p0110p1011p1101 − p0010p0100p1001p1111 〉.
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Computing the MLE of a Parametrized Statistical Model

Model parametrized by ψ : U ⊂ Rd −→M ⊂ Rn :

θ = (θ1, . . . , θd) 7→ (f1(θ), f2(θ), . . . , fn(θ))

Observed data u = (u1, u2, . . . , un) with sample size N =
∑

ui .

maximize `u(θ) = f u11 f u22 · · · f unn subject to f1 + f2 + · · ·+ fn = 1.

maximize log `u(θ) = u1 log f1 + u2 log f2 + · · ·+ un log fn subject to
f1 + f2 + · · ·+ fn = 1.
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The Likelihood Equations

maximize log `u(θ) = u1 log f1 + u2 log f2 + · · ·+ un log fn subject to
f1 + f2 + · · ·+ fn = 1.
Compute the critical points of log `u(θ). That is, solve the likelihood
equations (where µ is the Lagrange multiplier):

1

`u(θ)
· ∂`u(θ)

∂θ1
= µ

∂

∂θ1
(f1 + · · ·+ fn − 1)

1

`u(θ)
· ∂`u(θ)

∂θ2
= µ

∂

∂θ2
(f1 + · · ·+ fn − 1)

... =
...

1

`u(θ)
· ∂`u(θ)

∂θd
= µ

∂

∂θd
(f1 + · · ·+ fn − 1)

1 = f1 + f2 + · · ·+ fn

The best critical point θ̂ is the MLE.
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Maximum Likelihood Degree

Definition (informal)

The maximum likelihood degree (ML degree) of an algebraic statistical
model is the number of complex critical points of the likelihood equations
for generic data u.

• ML degree is a measure of complexity for maximum likelihood estimation
problem for a model.
• ML degree is one ⇐⇒ the MLE is a rational function of the data.

Example (ML Degree of Binary Four Cycle)

The ML degree of the binary four cycle is 13.
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Example (Twisted Cubic Model)

φ(s, t) = (s, st, st2, st3) ⊂ ∆4 ⊂ R4.

The likelihood function is

`u(s, t) = su0(st)u1(st2)u2(st3)u3

= su0+u1+u2+u3tu1+2u2+3u3

log `u(s, t) = (u0 + u1 + u2 + u3) log s + (u1 + 2u2 + 3u3) log t

The likelihood equations are:

u0 + u1 + u2 + u3
s

= µ(1 + t + t2 + t3)

u1 + 2u2 + 3u3
t

= µ(s + 2st + 3st2)

s + st + st2 + st3 = 1

ML degree is 3.
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Maximum Likelihood Degree

Definition (Precise)

Let V ⊂ Pn−1 be a projective variety over C, and let

`u =
pu11 pu22 · · · punn

(p1 + · · ·+ pn)(u1+···+un)
.

The ML degree of V is the number of complex critical points of `u on
Vreg \ H for generic data u = (u1, . . . , un) where

H = {p : p1 · · · pn(p1 + · · ·+ pn) = 0}.
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ML Degree: some History

Catanese-Hoşten-Khetan-Sturmfels [06]: introduced and proved ML
degree well-defined

if f1(θ), . . . , fn(θ) are polynomials with generic coefficients, then ML
degree is the top Chern class of Ω1

V (logD).
under some restricted assumptions ML degree of V is ±χtop(Pd \ D).

Hoşten-Khetan-Sturmfels [05]: symbolic algorithms to compute ML
degree

Hauenstein-Rodriguez-Sturmfels [12]: computed ML degree of various
determinantal varieties using NAG

Huh [13]: the ML degree of a smooth very affine variety is ±χtop(·).

Huh [13]: characterized varieties of ML degree one
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Scaled Toric Models

Integer matrix A of size (d − 1)× n

Map ψA : (C∗)d −→ (C∗)n where

ψA(s, θ1, . . . , θd−1) = (sθa1 , sθa2 , . . . , sθan).

Toric Variety VA defined by image of ψA.

Now, scaling vector c ∈ (C∗)n:

ψc
A(s, θ1, θ2, . . . , θd−1) = (c1sθ

a1 , c2sθ
a2 , . . . , cnsθ

an)

V c
A := ψc

A((C∗)d)
Z

is the scaled toric variety.
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Main Question

How does the ML degree of a scaled toric model depend on the scaling?
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Scaled Twisted Cubic

Example

Consider the scaling vector c = (1, 3, 3, 1). Then for the parametrized
scaled twisted cubic:

φc(s, t) = (1s, 3st, 3st2, 1st3) ⊂ ∆4 ⊂ R4

we have that mldeg(Mc) =

1 < 3 = deg(M).
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Birch’s Theorem

Theorem (Birch)

Given A for a toric model and a vector of positive counts u with total sum
N, the MLE is the unique non-negative solution to the system

A p̂ =
1

N
Au

with p̂ ∈ VA (that is, p̂ = ψA(θ̂)).

Remark: It still holds for scaled toric models with positive scalings.
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Example

Example (Veronese)

A =

(
0 1 2 0 1 0
0 0 0 1 1 2

)
ψ(s, θ1, θ2) = (s, sθ1, sθ

2
1, sθ2, sθ1θ2, sθ

2
2)

and data vector u = (1, 3, 5, 7, 9, 2).

Solving the critical equations we
obtain the four points

(.28887, 1.43166,−1.8931), (.303937,−1.88472, 1.34701)

(.857893,−.762951,−.718984), (.0863377, 1.63267, 1.51507)

Thus the ML degree is 4 and the MLE is θ̂ = (.0863377, 1.63267, 1.51507).
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Scaled Toric Varieties

Example

Let V be the Veronese surface and let c = (1, 2, 1, 1, 2, 1).

ψc(s, θ1, θ2) = (1s, 2sθ1, 1sθ
2
1, 1sθ2, 2sθ1θ2, 1sθ

2
2)

mldeg(Vc) =2 < deg(Vc) = 4.
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Main Result

Theorem (Likelihood Geometry Group)

Let c ∈ (C∗)n and let V ⊂ Pn−1 be the toric variety defined by
A ∈ Z(d−1)×n. Then

mldeg(Vc) ≤ deg(V ) and

mldeg(Vc) < deg(V ) if and only if c is in the hypersurface defined by
EA, the principal A-determinant [GKZ].

Corollary: For generic scalings c, it happens that mldeg(Vc) = deg(V )
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Example

A =

(
0 1 2 0 1 0
0 0 0 1 1 2

)

a1 a2 a3

a4

a6

a5

∆A = det(C ) = det

 c00 c10/2 c01/2
c10/2 c20 c11/2
c01/2 c11/2 c02

.

∆00,10,20 = c210 − 4c00c20 ∆00,01,02 = c201 − 4c00c02
∆20,11,02 = c211 − 4c20c02

EA = det(C )(c210 − 4c00c20)(c201 − 4c00c02)(c211 − 4c20c02)c00c20c02.
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ML Degree Stratification

Example

c = (1, 2, 1, ∗, ∗, ∗)

mldeg(Xc) = 3

c = (1, 2, 1, 2, ∗, 1) mldeg(Xc) = 2

c = (1, 2, 1, 2, 2, 1) mldeg(Xc) = 1

c = (1, 4, 1, 6, 6, 6) mldeg(Xc) = 3

Theorem (Likelihood Geometry Group)

Consider the Veronese variety Ver(d − 1, k) for k ≤ d − 1 with scaling
given by c = (1, 1, . . . , 1, 1). Then mldeg(Ver(d − 1, k)) = kd−1.
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Recall: Homotopy Continuation

Given F , a polynomial system of equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fn(x1, . . . , xn) = 0.

Choose and solve instead an (easier) polynomial system G based on
characteristics of F .

Form the homotopy system H(x , t) = (1− t) · F (x) + t · G (x)

Use predictor-corrector methods to track the numerical solutions as t
moves from t = 1 to t = 0.
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Homotopy Tracking

Figure: Homotopy Continuation Illustration (Dani Brake)
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Homotopy Tracking

Theorem (Likelihood Geometry Group)

Fix a generic data vector u with positive entries. Let cwin and cstat be
scalings with positive entries.

Consider the homotopy with target system
the critical likelihood equations for the model V cstat

A and start system the
ones for V cwin

A , with data vector u.

Let θ̂win and θ̂stat be the respective MLEs and let γ denote the path of the
homotopy whose start point (at t = 1) corresponds to θ̂win. Then, the
endpoint of γ (at t = 0) is θ̂stat .
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Proof Sketch

By Birch’s Theorem, a homotopy between the two systems is given by

H(θ, t) := t

(
Ap̂stat −

1

N
Au

)
+ (1− t)

(
Ap̂win −

1

N
Au

)

This simplifies to A · (p̂c(t) − 1
N u) where c(t) = tcstat + (1− t)cwin

For positive real cwin, cstat , we have c(t) > 0 for any t ∈ [0, 1]. Thus
by Birch’s Theorem there is exactly one positive real solution to the
system at every point along the homotopy path.

Left to show tracking paths do not intersect (we show the Jacobian
matrix of the system has always full rank)
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Possible Applications

In practice, a statistical toric model will come with a specified scaling
cstat .

Knowing how scaling vectors c affect the ML degree of a particular
toric model VA allows us to find a convenient cwin (e.g. such that the
model has low ML degree).

By the Theorem, we can now find the MLE θ̂win and track its unique
homotopy path to find the original MLE of interest θ̂stat .
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Application Example

Example (Veronese revisited)

Recall

A =

[
0 1 2 0 1 0
0 0 0 1 1 2

]
,

with u = (1, 3, 5, 7, 9, 2). Here cstat = (1, 1, 1, 1, 1, 1).

By choosing
cwin = (1, 2, 1, 2, 2, 1), the ML degree drops to 1. Computing the unique
critical point we obtain the MLE θ̂win = (.0493827, 1.83333, 1.66667).
Tracking this point in the homotopy we arrive at the point
θ̂track = (.0863377, 1.63267, 1.51507). This coincides with the MLE θ̂stat
computed before.
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Success story
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Figure: Running times of iterative proportional scaling (triangles) versus path tracking (circles)
on rational normal scrolls. Average of 7 trials.
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Advertisement: Check out poster at SIAM Applied Algebraic Geometry
(Monday PP1 Welcome Reception and Poster Session) presented by Evan
Nash:

Maximum Likelihood Estimate Homotopy Tracking for Toric Models

Advertisement: Algebraic Statistics Day on August 11 at MPI Leipzig!

THANK YOU!
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