
Tutorial: Gaussian conditional independence and
graphical models

Thomas Kahle
Otto-von-Guericke Universität Magdeburg



The central dogma of algebraic statistics

Statistical models are varieties

Today

Demonstrate algebraic approaches to conditional independence

• For Gaussian vectors X = (X1, . . . , Xm) with values in Rm.

• Source: Seth Sullivant’s book manuscript “Algebraic Statistics”.
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The density

A random vector X = (X1, . . . , Xm) has a Gaussian (or normal)
distribution if its density with respect to the Lebesgue measure is

f(x) =
1

(2π)m/2 det Σ1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
for some µ ∈ Rm and Σ ∈ PDm positive definite.

• Density wrt Lebesgue measure means

Prob(X ∈ A) =

∫
A
f(x)dx A ⊆ Rm

• µ is the mean

• Σ−1 the concentration matrix, and

• Σ the covariance matrix.



Marginals

Let A ⊆ [m] and X = (X1, . . . , Xm) a Gaussian random vector.

• The marginal density fA(xA) of XA = (Xi)i∈A is defined by

fA(xA) =

∫
R[m]\A

f(xA, x[m]\A)dx[m]\A

• The marginal XA of a Gaussian X is itself Gaussian with mean
µA = (µi)i∈A and covariance ΣA×A = (Σij)i,j∈A.

Independence

Let A,B ⊆ [m] be disjoint. XA is independent of XB (A ⊥⊥ B ), if

fA∪B(xA, xB) = fA(xA)fB(xB)

This happens if and only if ΣA×B = 0.



Example Independence

X1 = delay of your flight to Atlanta,
X2 = delay of my flight to Atlanta.
With no further information, a reasonable first assumption: X1 ⊥⊥ X2 .

or maybe not?

Assume our day of arrival sees a lot of rain (a variable X3 takes high
value).

• X1 and X2 show correlation (e.g. both more likely delayed)

• This correlation is explained by X3

• Conditionally on X3 being large, X1 and X2 are still
independent.

• Capture this by dividing by the marginal density of X3.
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Conditionals

Let A,B ⊆ [m] be disjoint.

• For each fixed xB ∈ RB, the conditional density fA|B(xA, xB)
of A given XB = xB is defined by

fA|B(xA, xB) =
fA∪B(xA, xB)

fB(xB)

• The conditional density of a Gaussian is Gaussian with mean

µA + ΣA×BΣ−1B×B(xB − µB)

and covariance

ΣA×A − ΣA×BΣ−1B×BΣB×A.



Definition

Let A,B,C ⊆ [m] be pairwise disjoint and f be a Gaussian density.
A is conditionally independent of B given C, written A ⊥⊥ B |C if
for all xA ∈ RA, xB ∈ RB, xC ∈ RC

fAB|C(xA, xB, xC) = fA|C(xA, xC)fB|C(xB, xC).

Convention: omit ∪, i.e. AC = A ∪ C and so on.

Proposition

A ⊥⊥ B |C if and only if rk ΣAC×BC = |C|.
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A ⊥⊥ B |C if and only if rk ΣAC×BC = |C|.

Proof

Conditional distribution of XAB given XC = xc has covariance

ΣAB×AB − ΣAB×CΣ−1C×CΣC×AB

Conditional independence happens if A×B submatrix vanishes:

S = ΣA×B − ΣA×CΣ−1C×CΣC×B = 0

This matrix is the Schur complement in

ΣAC×BC =

(
ΣA×B ΣA×C
ΣC×B ΣC×C .

)
−→

(
S ΣA×C
0 ΣC×C .

)
.

(subtract right column times Σ−1C×CΣC×B from left column)



If you don’t like densities, this can be your starting point

Definition

Let A,B,C ⊆ [m] be pw. disjoint. The corresponding conditional
independence (CI) ideal is

IA⊥⊥B |C = 〈(|C|+ 1)−minors of ΣAC×BC〉

The conditional independence model is

MA⊥⊥B |C = V (IA⊥⊥B |C ) ∩ PDm.

(note: this is a semi-algebraic set)

Our goal: Study Gaussian conditional independence using conditional
independence ideals



Proposition (“CI Axioms”)

1 A ⊥⊥ B |C ⇒ B ⊥⊥ A |C (symmetry)

2 A ⊥⊥ B ∪D |C ⇒ A ⊥⊥ B |C (decomposition)

3 A ⊥⊥ B ∪D |C ⇒ A ⊥⊥ B |C ∪D (weak union)

4 A ⊥⊥ B |C ∪D and A ⊥⊥ D |C ⇒ A ⊥⊥ B ∪D |C
(contraction)

Proof

• Proof for Gaussians is exercise in linear algebra.

• Can be proven for general (non-Gaussian) densities



Special properties of Gaussian conditional independence

• The “intersection axiom”

A ⊥⊥ B |C ∪D and A ⊥⊥ C |B ∪D ⇒ A ⊥⊥ B ∪ C |D

holds for all strictly positive densities

• “Gaussoid axiom”

A ⊥⊥ B |{c} ∪D and A ⊥⊥ B |D
⇒ A ⊥⊥ B ∪ {c} |D or A ∪ {c} ⊥⊥ B |D

holds for Gaussians.

Why are these lemmas called axioms?

Q: Is there a finite axiomatization of Gaussian CI?



Special properties of Gaussian conditional independence

• The “intersection axiom”

A ⊥⊥ B |C ∪D and A ⊥⊥ C |B ∪D ⇒ A ⊥⊥ B ∪ C |D

holds for all strictly positive densities

• “Gaussoid axiom”

A ⊥⊥ B |{c} ∪D and A ⊥⊥ B |D
⇒ A ⊥⊥ B ∪ {c} |D or A ∪ {c} ⊥⊥ B |D

holds for Gaussians.

Why are these lemmas called axioms?

Q: Is there a finite axiomatization of Gaussian CI?



Conjunctions of CI statements

Want to answer questions like: Given a density satisfies a set

C = {A1 ⊥⊥ B1 |C1 , . . . An ⊥⊥ Bn |Cn }

of CI statements, what other properties does it have?

Algebraic approach

The covariances that satisfy C:

MC = PDm ∩ V (IA1⊥⊥B1 |C1
) ∩ · · · ∩ V (IAn⊥⊥Bn |Cn

)

Approach: Compute primary decomposition (or minimal primes) of

IC = IA1⊥⊥B1 |C1
+ · · ·+ IAn⊥⊥Bn |Cn



Example

Let’s study the contraction property algebraically:

A ⊥⊥ B |C ∪D and A ⊥⊥ D |C ⇒ A ⊥⊥ B ∪D |C

With m = 3, A = {1}, B = {2}, C = ∅, D = {3} we get

C = {1 ⊥⊥ 2 |3 , 1 ⊥⊥ 3}

⇒ Macaulay2.

Primary decomposition has two components:

V (IC) = V (Σ12,Σ13) ∪ V (Σ13,Σ33).

• The second component does not intersect PD3

• The first component is the desired conclusion 1 ⊥⊥ {2, 3}
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Success story (Sullivant, 2009)

For n ≥ 4, consider the cyclic set of CI statements

C = {1 ⊥⊥ 2 |3 , . . . , n− 1 ⊥⊥ n |1 , n ⊥⊥ 1 |2 }

(Binomial) primary decomposition yields

• IC has two minimal primes
• 〈Σ12,Σ23, . . . ,Σn1〉 corresponding to

1 ⊥⊥ 2 , 2 ⊥⊥ 3 , . . . , n ⊥⊥ 1

• The toric ideal IC :
(∏

ij Σij

)∞
whose variety does not contain

positive definite matrices.

• No subset of C implies the marginal independencies.

⇒ Gaussian conditional independence cannot be finitely axiomatized.
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A good source for CI ideals + problems: graphical models.

Graphical models

Let G be a graph, either directed, undirected, or mixed, whose vertices
are random variables, and edges represent dependency.

• A graphical model assigns a set of covariance matrices to G
• Use separation in the graph to define conditional independence
• Use connection in the graph to parametrize
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Simplest example

As the simplest example, consider an undirected graph G = (V,E).

• The pairwise Markov property of G postulates that
v ⊥⊥ w |V \ {v, w} for every non-edge (v, w) /∈ E.

• The global Markov property of G postulates A ⊥⊥ B |C
whenever C separates A and B in G.

Theorem

Both Markov properties yield the same set of covariance matrices
and this set is characterized by Σ−1ij = 0 whenever (i, j) /∈ E (which
yields determinantal constraints on Σ by Kramer’s rule).



For DAGs, there is are natural parametrization

Let D be DAG (acyclic directed graph) on [m] (top. ordered).

• Postulate structural equations

Xj =
∑

i∈pa(j)

λijXi + εj , j ∈ [m],

where εj is Gaussian with variance φj , and λij ∈ R.

• Then X = (X1, . . . , Xm) is Gaussian with covariance

Σ = (I − Λ)−TΦ(I − Λ)−1

where Φ = diag(φ1, . . . , φm) consists of the variances of
X1, . . . , Xm, and Λ is upper triangular with entries λij and
ones on the diagonal.

• The DAGical model consist of all such covariance matrices.

⇒ Question: What is the vanishing ideal in R[Σ]?
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Separation gives valid conditional independence constraints

A,B are d-separated by C if every path from A to B either

• contains a “collider” · · · → v ← . . . where neither v nor any
descendent of v are contained in C

• contains a blocked vertex v ∈ C with · · · → v → . . .

Theorem

A CI Statement A ⊥⊥ B |C is valid for all covariances in the model if
and only if C d-separates A and B in G.

Surprise

There are more vanishing minors on the model, and all of these can
be found using trek separation of Sullivant, Talaska, and Draisma.
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Trek separation is still not all. In general there are non-determinantal
constraints too (→ exercise).

General problem

Characterization of graphs for which the vanishing ideal equals the
global Markov ideal.

Holds for trees and all graphs on ≤ 4 vertices.



Functionality of the graphical models package

• Creation of appropriate rings for conditional independence and
graphical models in the Gaussian and discrete case:
gaussianRing, markovRing.

• Deal with undirected, directed, and mixed graphs.

• Enumeration of separation statements:
pairwise, local, global, d-, trek.

• Creation of conditional independence ideals from a list of
statements: conditionalIndependenceIdeal.

• Write out parametrizations of graphicalModels as rational maps
and compute vanishingIdeal.

• Solve Gaussian identifiability problems with
identifyParameters.


