Tutorial: Gaussian conditional independence and graphical models

Thomas Kahle
Otto-von-Guericke Universität Magdeburg
The central dogma of algebraic statistics

Statistical models are varieties

• For Gaussian vectors $X = (X_1, \ldots, X_m)$ with values in \mathbb{R}^m.

Source: Seth Sullivant's book manuscript "Algebraic Statistics".
The central dogma of algebraic statistics

Statistical models are varieties

Today

Demonstrate algebraic approaches to conditional independence

- For Gaussian vectors $X = (X_1, \ldots, X_m)$ with values in \mathbb{R}^m.
- Source: Seth Sullivant’s book manuscript “Algebraic Statistics”.

Source: Seth Sullivant’s book manuscript “Algebraic Statistics”.

For Gaussian vectors $X = (X_1, \ldots, X_m)$ with values in \mathbb{R}^m.

Source: Seth Sullivant’s book manuscript “Algebraic Statistics”.
The density

A random vector $X = (X_1, \ldots, X_m)$ has a Gaussian (or normal) distribution if its density with respect to the Lebesgue measure is

$$f(x) = \frac{1}{(2\pi)^{m/2} \det \Sigma^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

for some $\mu \in \mathbb{R}^m$ and $\Sigma \in \text{PD}_m$ positive definite.

- Density wrt Lebesgue measure means
 $$\text{Prob}(X \in A) = \int_A f(x)dx \quad A \subseteq \mathbb{R}^m$$

- μ is the mean
- Σ^{-1} the concentration matrix, and
- Σ the covariance matrix.
Let $A \subseteq [m]$ and $X = (X_1, \ldots, X_m)$ a Gaussian random vector.

- The marginal density $f_A(x_A)$ of $X_A = (X_i)_{i \in A}$ is defined by

$$f_A(x_A) = \int_{\mathbb{R}^{m \setminus A}} f(x_A, x_{[m] \setminus A}) \, dx_{[m] \setminus A}$$

- The marginal X_A of a Gaussian X is itself Gaussian with mean $\mu_A = (\mu_i)_{i \in A}$ and covariance $\Sigma_{A \times A} = (\Sigma_{ij})_{i,j \in A}$.

Independence

Let $A, B \subseteq [m]$ be disjoint. X_A is independent of X_B ($A \perp \perp B$), if

$$f_{A \cup B}(x_A, x_B) = f_A(x_A)f_B(x_B)$$

This happens if and only if $\Sigma_{A \times B} = 0$.
Example Independence

\[X_1 = \text{delay of your flight to Atlanta}, \]
\[X_2 = \text{delay of my flight to Atlanta}. \]

With no further information, a reasonable first assumption: \(X_1 \perp \perp X_2 \).
Example Independence

\[X_1 = \text{delay of your flight to Atlanta}, \]
\[X_2 = \text{delay of my flight to Atlanta}. \]

With no further information, a reasonable first assumption: \(X_1 \perp \perp X_2 \).

or maybe not?

Assume our day of arrival sees a lot of rain (a variable \(X_3 \) takes high value).

- \(X_1 \) and \(X_2 \) show correlation (e.g. both more likely delayed)
- This correlation is explained by \(X_3 \)
- Conditionally on \(X_3 \) being large, \(X_1 \) and \(X_2 \) are still independent.
- Capture this by dividing by the marginal density of \(X_3 \).
Let $A, B \subseteq [m]$ be disjoint.

- For each fixed $x_B \in \mathbb{R}^B$, the conditional density $f_{A|B}(x_A, x_B)$ of A given $X_B = x_B$ is defined by

$$f_{A|B}(x_A, x_B) = \frac{f_{A \cup B}(x_A, x_B)}{f_B(x_B)}$$

- The conditional density of a Gaussian is Gaussian with mean

$$\mu_A + \Sigma_{A \times B} \Sigma^{-1}_{B \times B} (x_B - \mu_B)$$

and covariance

$$\Sigma_{A \times A} - \Sigma_{A \times B} \Sigma^{-1}_{B \times B} \Sigma_{B \times A}.$$
Definition

Let $A, B, C \subseteq [m]$ be pairwise disjoint and f be a Gaussian density. A is conditionally independent of B given C, written $A \perp \perp B \mid C$ if for all $x_A \in \mathbb{R}^A, x_B \in \mathbb{R}^B, x_C \in \mathbb{R}^C$

$$f_{AB\mid C}(x_A, x_B, x_C) = f_{A\mid C}(x_A, x_C) \cdot f_{B\mid C}(x_B, x_C).$$

Convention: omit \cup, i.e. $A_C = A \cup C$ and so on.

Proposition $A \perp \perp B \mid C$ if and only if $rk \Sigma_{AC \times BC} = |C|$.

Definition

Let $A, B, C \subseteq [m]$ be pairwise disjoint and f be a Gaussian density. A is conditionally independent of B given C, written $A \perp \perp B \mid C$ if for all $x_A \in \mathbb{R}^A, x_B \in \mathbb{R}^B, x_C \in \mathbb{R}^C$

$$f_{AB \mid C}(x_A, x_B, x_C) = f_{A \mid C}(x_A, x_C)f_{B \mid C}(x_B, x_C).$$

Convention: omit \cup, i.e. $AC = A \cup C$ and so on.
Definition

Let $A, B, C \subseteq [m]$ be pairwise disjoint and f be a Gaussian density. A is conditionally independent of B given C, written $A \perp \perp B \mid C$ if for all $x_A \in \mathbb{R}^A, x_B \in \mathbb{R}^B, x_C \in \mathbb{R}^C$

$$f_{AB \mid C}(x_A, x_B, x_C) = f_{A \mid C}(x_A, x_C)f_{B \mid C}(x_B, x_C).$$

Convention: omit \cup, i.e. $AC = A \cup C$ and so on.

Proposition

$A \perp \perp B \mid C$ if and only if $\text{rk} \Sigma_{AC \times BC} = |C|$.
$A \independent B \mid C$ if and only if $\text{rk} \Sigma_{AC \times BC} = |C|$.

Proof

Conditional distribution of X_{AB} given $X_C = x_c$ has covariance

$$\Sigma_{AB \times AB} - \Sigma_{AB \times C} \Sigma_{C \times C}^{-1} \Sigma_{C \times AB}$$

Conditional independence happens if $A \times B$ submatrix vanishes:

$$S = \Sigma_{A \times B} - \Sigma_{A \times C} \Sigma_{C \times C}^{-1} \Sigma_{C \times B} = 0$$

This matrix is the Schur complement in

$$\Sigma_{AC \times BC} = \begin{pmatrix} \Sigma_{A \times B} & \Sigma_{A \times C} \\ \Sigma_{C \times B} & \Sigma_{C \times C} \end{pmatrix} \rightarrow \begin{pmatrix} S & \Sigma_{A \times C} \\ 0 & \Sigma_{C \times C} \end{pmatrix}.$$

(subtract right column times $\Sigma_{C \times C}^{-1} \Sigma_{C \times B}$ from left column)
If you don’t like densities, this can be your starting point

Definition

Let $A, B, C \subseteq [m]$ be pw. disjoint. The corresponding conditional independence (CI) ideal is

$$I_{A \perp \perp B \mid C} = \langle (|C| + 1) - \text{minors of } \Sigma_{AC \times BC} \rangle$$

The conditional independence model is

$$\mathcal{M}_{A \perp \perp B \mid C} = V(I_{A \perp \perp B \mid C}) \cap \text{PD}_m.$$

(note: this is a semi-algebraic set)

Our goal: Study Gaussian conditional independence using conditional independence ideals
Proposition ("CI Axioms")

1. \(A \perp B \mid C \Rightarrow B \perp A \mid C \) (symmetry)
2. \(A \perp B \cup D \mid C \Rightarrow A \perp B \mid C \) (decomposition)
3. \(A \perp B \cup D \mid C \Rightarrow A \perp B \mid C \cup D \) (weak union)
4. \(A \perp B \mid C \cup D \) and \(A \perp D \mid C \Rightarrow A \perp B \cup D \mid C \) (contraction)

Proof

- Proof for Gaussians is exercise in linear algebra.
- Can be proven for general (non-Gaussian) densities
Special properties of Gaussian conditional independence

- The “intersection axiom”

\[A \perp \!\!\!\!\!\!\!\!\!\perp B \mid C \cup D \quad \text{and} \quad A \perp \!\!\!\!\!\!\!\!\!\perp C \mid B \cup D \Rightarrow A \perp \!\!\!\!\!\!\!\!\!\perp B \cup C \mid D \]

holds for all strictly positive densities

- “Gaussoid axiom”

\[A \perp \!\!\!\!\!\!\!\!\!\perp B \mid \{c\} \cup D \quad \text{and} \quad A \perp \!\!\!\!\!\!\!\!\!\perp B \mid D \]
\[\Rightarrow A \perp \!\!\!\!\!\!\!\!\!\perp B \cup \{c\} \mid D \quad \text{or} \quad A \cup \{c\} \perp \!\!\!\!\!\!\!\!\!\perp B \mid D \]

holds for Gaussians.
Special properties of Gaussian conditional independence

- The “intersection axiom”

\[
A \perp \perp B \mid C \cup D \quad \text{and} \quad A \perp \perp C \mid B \cup D \Rightarrow A \perp \perp B \cup C \mid D
\]

holds for all strictly positive densities.

- “Gaussoid axiom”

\[
A \perp \perp B \mid \{c\} \cup D \quad \text{and} \quad A \perp \perp B \mid D
\]

\[
\Rightarrow A \perp \perp B \cup \{c\} \mid D \quad \text{or} \quad A \cup \{c\} \perp \perp B \mid D
\]

holds for Gaussians.

Why are these lemmas called axioms?

Q: Is there a finite axiomatization of Gaussian CI?
Conjunctions of CI statements

Want to answer questions like: Given a density satisfies a set

\[\mathcal{C} = \{ A_1 \perp B_1 | C_1 , \ldots A_n \perp B_n | C_n \} \]

of CI statements, what other properties does it have?

Algebraic approach

The covariances that satisfy \(\mathcal{C} \):

\[\mathcal{M}_\mathcal{C} = \text{PD}_m \cap V(I_{A_1 \perp B_1 | C_1}) \cap \cdots \cap V(I_{A_n \perp B_n | C_n}) \]

Approach: Compute primary decomposition (or minimal primes) of

\[I_{\mathcal{C}} = I_{A_1 \perp B_1 | C_1} + \cdots + I_{A_n \perp B_n | C_n} \]
Let’s study the contraction property algebraically:

\[A \perp B | C \cup D \text{ and } A \perp D | C \Rightarrow A \perp B \cup D | C \]

With \(m = 3 \), \(A = \{1\} \), \(B = \{2\} \), \(C = \emptyset \), \(D = \{3\} \) we get

\[C = \{ 1 \perp 2 | 3 \), \(1 \perp 3 \} \]

\(\Rightarrow \) Macaulay2.
Example

Let’s study the contraction property algebraically:

\[A \perp B \mid C \cup D \quad \text{and} \quad A \perp D \mid C \Rightarrow A \perp B \cup D \mid C \]

With \(m = 3 \), \(A = \{1\} \), \(B = \{2\} \), \(C = \emptyset \), \(D = \{3\} \) we get

\[C = \{1 \perp 2 \mid 3 , 1 \perp 3\} \]

⇒ Macaulay2.

Primary decomposition has two components:

\[V(I_C) = V(\Sigma_{12}, \Sigma_{13}) \cup V(\Sigma_{13}, \Sigma_{33}). \]

- The second component does not intersect \(PD_3 \)
- The first component is the desired conclusion \(1 \perp \{2, 3\} \)
For \(n \geq 4 \), consider the cyclic set of CI statements

\[
C = \{ 1 \perp 2 | 3 , \ldots , n - 1 \perp n | 1 , n \perp 1 | 2 \}
\]

(Binomial) primary decomposition yields

- \(I_C \) has two minimal primes
- \(\langle \Sigma_{12}, \Sigma_{23}, \ldots, \Sigma_{n1} \rangle \) corresponding to \(1 \perp 2 , 2 \perp 3 , \ldots , n \perp 1 \)
- The toric ideal \(I_C : \left(\prod_{ij} \Sigma_{ij} \right)^\infty \) whose variety does not contain positive definite matrices.
- No subset of \(C \) implies the marginal independencies.
Success story (Sullivant, 2009)

For $n \geq 4$, consider the cyclic set of CI statements

$$C = \{ 1 \perp 2 | 3 , \ldots , n - 1 \perp n | 1 , n \perp 1 | 2 \}$$

(Binomial) primary decomposition yields

- I_C has two minimal primes
 - $\langle \Sigma_{12}, \Sigma_{23}, \ldots, \Sigma_{n1} \rangle$ corresponding to $1 \perp 2, 2 \perp 3, \ldots, n \perp 1$
 - The toric ideal $I_C : \left(\prod_{ij} \Sigma_{ij} \right)^\infty$ whose variety does not contain positive definite matrices.
- No subset of C implies the marginal independencies.

\Rightarrow Gaussian conditional independence cannot be finitely axiomatized.
A good source for CI ideals + problems: graphical models.
A good source for CI ideals + problems: graphical models.

Graphical models

Let G be a graph, either directed, undirected, or mixed, whose vertices are random variables, and edges represent dependency.

- A graphical model assigns a set of covariance matrices to G
 - Use separation in the graph to define conditional independence
 - Use connection in the graph to parametrize
As the simplest example, consider an undirected graph $G = (V, E)$.

- The **pairwise Markov property** of G postulates that $v \perp w \mid V \setminus \{v, w\}$ for every non-edge $(v, w) \notin E$.
- The **global Markov property** of G postulates $A \perp B \mid C$ whenever C separates A and B in G.

Theorem

Both Markov properties yield the same set of covariance matrices and this set is characterized by $\Sigma_{ij}^{-1} = 0$ whenever $(i, j) \notin E$ (which yields determinantal constraints on Σ by Kramer’s rule).
For DAGs, there is a natural parametrization

Let D be DAG (acyclic directed graph) on $[m]$ (top. ordered).

- Postulate *structural equations*

 \[X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + \epsilon_j, \quad j \in [m], \]

 where ϵ_j is Gaussian with variance ϕ_j, and $\lambda_{ij} \in \mathbb{R}$.

- Then $X = (X_1, \ldots, X_m)$ is Gaussian with covariance

 \[\Sigma = (I - \Lambda)^{-T} \Phi (I - \Lambda)^{-1} \]

 where $\Phi = \text{diag}(\phi_1, \ldots, \phi_m)$ consists of the variances of X_1, \ldots, X_m, and Λ is upper triangular with entries λ_{ij} and ones on the diagonal.

- The DAGical model consist of all such covariance matrices.
For DAGs, there is a natural parametrization

Let D be DAG (acyclic directed graph) on $[m]$ (top. ordered).

- Postulate *structural equations*

\[X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + \epsilon_j, \quad j \in [m], \]

where ϵ_j is Gaussian with variance ϕ_j, and $\lambda_{ij} \in \mathbb{R}$.

- Then $X = (X_1, \ldots, X_m)$ is Gaussian with covariance

\[\Sigma = (I - \Lambda)^{-T} \Phi (I - \Lambda)^{-1} \]

where $\Phi = \text{diag}(\phi_1, \ldots, \phi_m)$ consists of the variances of X_1, \ldots, X_m, and Λ is upper triangular with entries λ_{ij} and ones on the diagonal.

- The DAGical model consist of all such covariance matrices.

⇒ Question: What is the vanishing ideal in $\mathbb{R}[\Sigma]$?
Separation gives valid conditional independence constraints

A, B are d-separated by C if every path from A to B either

- contains a “collider” $\cdots \rightarrow v \leftarrow \cdots$ where neither v nor any descendent of v are contained in C
- contains a blocked vertex $v \in C$ with $\cdots \rightarrow v \rightarrow \cdots$

Theorem

A CI Statement $A \perp \!\!\!\!\perp B \mid C$ is valid for all covariances in the model if and only if C d-separates A and B in G.

Surprise

There are more vanishing minors on the model, and all of these can be found using trek separation of Sullivant, Talaska, and Draisma.
Separation gives valid conditional independence constraints

\[A, B \text{ are } d\text{-separated by } C \text{ if every path from } A \text{ to } B \text{ either} \]

- contains a “collider” \(\cdots \rightarrow v \leftarrow \cdots \) where neither \(v \) nor any descendent of \(v \) are contained in \(C \)
- contains a blocked vertex \(v \in C \) with \(\cdots \rightarrow v \rightarrow \cdots \)

Theorem

A CI Statement \(A \perp \!\!\!\perp B \mid C \) is valid for all covariances in the model if and only if \(C \) \(d \)-separates \(A \) and \(B \) in \(G \).

Surprise

There are more vanishing minors on the model, and all of these can be found using trek separation of Sullivant, Talaska, and Draisma.
Trek separation is still not all. In general there are non-determinantal constraints too (→ exercise).

General problem

Characterization of graphs for which the vanishing ideal equals the global Markov ideal.

Holds for trees and all graphs on ≤ 4 vertices.
Functionality of the graphical models package

- Creation of appropriate rings for conditional independence and graphical models in the Gaussian and discrete case: `gaussianRing`, `markovRing`.
- Deal with undirected, directed, and mixed graphs.
- Enumeration of separation statements: pairwise, local, global, d-, trek.
- Creation of conditional independence ideals from a list of statements: `conditionalIndependenceIdeal`.
- Write out parametrizations of `graphicalModels` as rational maps and compute `vanishingIdeal`.
- Solve Gaussian identifiability problems with `identifyParameters`.