Chordal Exercises

Practice

1. (a) Install the "Chordal" package. To do so, copy the file "Chordal.m2" and the folder "Chordal" into a new directory. Run M2 in this directory and execut installPackage ' 'Chordal',
(b) Run the script "ex.m2". The option JpgViewer should be dropped if there are problems.
2. Find a chordal completion of the Peterson graph using the command chordalGraph. The Peterson graph can be obtained as $G=$ generalizedPetersonGraph $(5,2)$. The command displayGraph shows the graph.
3. Let $I_{n, q}$ be the q-coloring ideal of the n-cycle graph. The function colorIdealCycle(n, q) of "ex.m2" computes $I_{n, q}$.
(a) Verify that $I_{101,2}$ is infeasible using the commands chordalElim(N); print N.
(b) Compute the elimination ideals of $I_{100,3}$.
4. Let I_{n} be the ideal of adjacent minors of a $2 \times n$ matrix. The function adjMinorsIdeal returns I_{n} and a chordal network representation.
(a) Use the command dim to compute the dimension of I_{n} ?
(b) Use the command codimCount to determine the total number of components.
(c) Use the command nextChain to get the first component of the network.
(d) Use the command displayNet to visualize the chordal network.
5. Consider the ideal

$$
I_{n, 3}:=\left\langle x_{i} x_{j} x_{k}: 1 \leq i<j<k \leq n\right\rangle \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]
$$

Define a function that computes $I_{n, 3}$ for any n (use Lex order). Find a chordal network representation of this ideal, using the commands $N=$ chordalNet I; chordalTria N; displayNet N
6. Consider the 4 -coloring problem explained by Mike (see file "Day 1/Mike/eg-4color.m2"). Solve the problem by computing the elimination ideals.

Theory

1. Show that the following definitions of chordal graphs are equivalent.
(a) A graph is chordal if it has a perfect elimination ordering.
(b) A graph is chordal if it has no induced cycle of length ≥ 4.
2. The treewidth is a very important parameter of a graph. The clique number of a graph is the size of the largest clique. The treewidth of a chordal graph is its clique number minus one. The treewidth of a (nonchordal) graph is the smallest treewidth among all possible chordal completions. What is the treewidth of: the path P_{n} ? a tree? the cycle graph C_{n} ? the complete graph K_{n} ? the grid graph $P_{n} \times P_{n}$?
