Packages for biological applications: PhylogeneticTrees.m2 and ReactionNetworks.m2

Elizabeth Gross (SJSU)

$$
\text { July 29, } 2017
$$

Packages for Biological Applications

PhylogeneticTrees.m2 Hector Baños, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross, Pamela Harris, Robert Krone, Colby Long, Allen Stewart, Robert Walker.

ReactionNetworks.m2 Timothy Duff, Cvetelina Hill, Kisun Lee, Anton Leykin.

PhylogeneticTrees.m2

Inferring phylogenetic trees

Problem：

Given aligned DNA sequences from a collection of species，find the tree that best describes the species＇an－ cestral history．

Human：．．．ACCGTGCAACGTGAACGA．．．
Chimp：．．．．ACCTTGCAAGGTAAACGA．．．
Gorilla：．．．．ACCGTGCAACGTAAACTA．．．

Possible Trees：

- Assumes evolution proceeds along a n-leaf tree according to a Markov process.
- Assumes site independence.
- Data are the observed frequencies of all n-tuples of DNA bases.
... ACCGTGCAACGTGAACGA...
... ACCTTGCAAGGTAAACGA...
... ACCGTGCAACGTAAACTA...

Gray nodes:

extant species (observable)
White nodes:
extinct species (hidden)

Group-based Markov models

Parameters: A tree T and transition matrices for each edge.

Example: 4-state group-based Markov model (K3P) on the claw tree $K_{1,3}$

$X_{1}, X_{2}, X_{3} \in\{A, C, G, T\}$ are random variables and $\{A, C, G, T\}$ is viewed as the group $\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}$.
$Y \in\{A, C, G, T\}$ is a hidden (latent) random variable with distribution $\left(\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}\right)$, e.g. $P(Y=A)=\pi_{A}$.

Group-based Markov models

Parameters: A tree T and transition matrices for each edge.

Example: 4-state group-based Markov model (K3P) on the claw tree $K_{1,3}$

$X_{1}, X_{2}, X_{3} \in\{A, C, G, T\}$ are random variables and $\{A, C, G, T\}$ is viewed as the group $\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}$.
$Y \in\{A, C, G, T\}$ is a hidden (latent) random variable with distribution $\left(\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}\right)$, e.g. $P(Y=A)=\pi_{A}$.

Group based models

Transition matrices

Cavender-Farris-Neyman (CFN)

> Jukes-Cantor (JC)
$\left(\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right)$

$$
\left(\begin{array}{llll}
\alpha & \beta & \beta & \beta \\
\beta & \alpha & \beta & \beta \\
\beta & \beta & \alpha & \beta \\
\beta & \beta & \beta & \alpha
\end{array}\right)
$$

Kimura 2-parameter (K2P)
Kimura 3-parameter (K3P)

$$
\left(\begin{array}{llll}
\alpha & \beta & \gamma & \delta \\
\beta & \alpha & \delta & \gamma \\
\gamma & \delta & \alpha & \beta \\
\delta & \gamma & \beta & \alpha
\end{array}\right)
$$

Models, Ideals, and Varieties

The parameterization of the model $\mathcal{M}_{T}(\mathrm{~K} 3 \mathrm{P})$ is

$$
\begin{aligned}
& \phi_{T}: \mathbb{R}^{4} \times \mathbb{R}^{4} \times \mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R}^{4 \times 4 \times 4} \\
& \left(\pi, \mathbf{M}_{1}, \mathbf{M}_{2}, \mathbf{M}_{3}\right) \mapsto \sum_{i=1}^{4} \pi_{i} \mathbf{M}_{1 i} \otimes \mathbf{M}_{2 i} \otimes \mathbf{M}_{3 i}
\end{aligned}
$$

Image in $\mathbb{R}^{4 \times 4 \times 4}$ of a point in the parameter space is a probability table p whose $j k /$ th entry is the joint probability that $X_{1}=j, X_{2}=k$, and $X_{3}=I$.

$$
p_{j k l}=\sum_{i=1}^{4} \pi_{i} \mathbf{M}_{1 i j} \mathbf{M}_{2 i k} \mathbf{M}_{3 i l} .
$$

The ideal associated to \mathcal{M}_{T} is

$$
\mathcal{I}_{T}=\left\{f \in \mathbb{C}\left[p_{j k l}: j, k, l \in\{A, C, G, T\}\right]: f(p)=0 \text { for all } p \in \mathcal{M}_{T}\right\}
$$

The variety associated to \mathcal{M}_{T} is

$$
\mathcal{V}_{T}=\left\{p \in \mathbb{C}^{4 \times 4 \times 4}: f(p)=0 \text { for all } f \in \mathcal{I}_{T}\right\}=\overline{\operatorname{lm} \phi_{T}}=\overline{\mathcal{M}_{T}} .
$$

Group-based models correspond to toric varieties

Theorem (Hendy-Penny 1993, Evans-Speed 1993)

In the Fourier coordinates, a group-based model is parametrized by monomial functions in terms of the Fourier parameters. (See Sturmfels-Sullivant 2005 for detailed description)

- $G: \mathbb{Z}_{2}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- $T: n$ taxon tree.
- $\Sigma(T)$: set of splits of T.
- For split $A \mid B \in \Sigma(T)$, associate a set of parameters: $a_{g}^{A \mid B}$ where $g \in G$.

The toric parameterization for the model is:

$$
q_{g_{1}, \ldots, g_{n}}= \begin{cases}\prod_{A \mid B \in \Sigma(T)} a_{\sum_{i \in A g_{i}}}^{A \mid B} & \text { if } \sum_{i=1}^{n} g_{i}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Example

Kimura 3-parameter model

$$
\begin{aligned}
& \Sigma(T)= \\
& \{1|234,2| 134,3 \mid 124, \\
& 4|123,12| 34\}
\end{aligned}
$$

Parameterization:

$$
q_{g_{1} g_{2} g_{3} g_{4}}=a_{g_{1}}^{1 \mid 234} a_{g_{2}}^{2 \mid 134} a_{g_{3}}^{3 \mid 124} a_{g_{4}}^{4 \mid 123} a_{g_{1}+g_{2}}^{12 \mid 34}
$$

Example:

$$
q_{A C G T}=a_{A}^{1 \mid 234} a_{C}^{2 \mid 134} a_{G}^{3 \mid 124} a_{T}^{4 \mid 123} a_{C}^{12 \mid 34}
$$

Mixture models

Due to biological mechanisms, such as incomplete lineage sorting or horizontal gene transfer, sometimes we want to consider the mixture of two tree models.

- $T_{1}, T_{2}: n$ leaf trees
- $\mathcal{M}_{T_{1}}, \mathcal{M}_{T_{2}}:$ tree-based models
- $\phi_{T_{1}}, \phi_{T_{2}}$: parameterization maps of $\mathcal{M}_{T_{1}}$ and $\mathcal{M}_{T_{2}}$
- α : the mixing parameter

The parameterization of the mixture model $\mathcal{M}_{T_{1}, T_{2}}$ is

$$
\begin{aligned}
\psi_{T_{1}, T_{2}}: \Theta_{T_{1}} \times \Theta_{T_{2}} \times[0,1] & \rightarrow \Delta^{4^{n}-1} \subseteq \mathbb{R}^{4^{n}} \\
\left(\theta_{1}, \theta_{2}, \alpha\right) & \mapsto \alpha \phi_{T_{1}}\left(\theta_{1}\right)+(1-\alpha) \phi_{T_{2}}\left(\theta_{2}\right)
\end{aligned}
$$

The corresponding variety of $\mathcal{M}_{T_{1}, T_{2}}$ is a join variety.

$$
\mathcal{V}_{T_{1}, T_{2}}=\overline{\mathcal{M}_{T_{1}, T_{2}}}=\overline{\operatorname{lm} \psi_{T_{1}, T_{2}}}=\operatorname{Join}\left(V_{T_{1}}, V_{T_{2}}\right)
$$

Open Problems for mixture models

- Determine invariants for mixture models These invariants can be used for model selection and also to prove theoretical results regarding identifiability.
- Identifiability Determine when

$$
\mathcal{V}_{\mathcal{T}_{1}, \mathcal{T}_{2}} \subseteq \mathcal{V}_{\mathcal{T}_{3}, \mathcal{T}_{4}}
$$

To establish identifiability, one usually needs to know
(1) The dimension of $\mathcal{V}_{\mathcal{T}_{1}, \tau_{2}}$ and $\mathcal{V}_{\mathcal{T}_{3}}, \mathcal{T}_{4}$ (current work with Hector Baños, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross, Pamela Harris, Robert Krone, Colby Long, Allen Stewart, and Robert Walker).
(2) Some invariants of $\mathcal{M}_{\mathcal{T}_{1}, \mathcal{T}_{2}}$.

ReactionNetworks.m2

Motivation

How do cells make decisions?

Chemical Reaction Network Theory

A chemical reaction network is a given by a triple $(\mathcal{S}, \mathcal{C}, \mathcal{R})$ of finite sets.

- Species, $\mathcal{S}=\left\{S_{1}, \ldots, S_{d}\right\}$: molecules undergoing a series of chemical reactions.
- Complexes, $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$: linear combinations of the species representing those used and produced in each reaction (i.e. reactants and products).
- Reactions, $\mathcal{R}=\left\{y_{j} \rightarrow y_{j}^{\prime}\right\}$: directed graph with the complexes as vertices, $y_{j}, y_{j}^{\prime} \in \mathcal{C}$

Example

$$
\begin{gathered}
A+B \rightarrow 2 B \\
B \rightarrow A \\
\mathcal{S}=\{A, B\}, \quad \mathcal{C}=\{A+B, 2 B, B, A\}, \quad \mathcal{R}=\{A+B \rightarrow 2 B, B \rightarrow A\}
\end{gathered}
$$

Mass action kinetics

$\mathrm{A} \rightleftarrows 2 \mathrm{~B}$

$$
\begin{aligned}
& \mathcal{S}=\{A, B, C, D, E\} \\
& \mathcal{C}=\{A, 2 B, A+C, D, B+E\}
\end{aligned}
$$

We will work in the deterministic setting with the assumption of mass action kinetics.

Definition

Mass-action kinetics: rate of reaction is proportional to the product of the concentrations of the species.

We call the constant of proportionality the rate constant.

Mass action kinetics

$$
\begin{aligned}
& \mathcal{S}=\{A, B, C, D, E\} \\
& \mathcal{C}=\{A, 2 B, A+C, D, B+E\}
\end{aligned}
$$

We will work in the deterministic setting with the assumption of mass action kinetics.

Definition

Mass-action kinetics: rate of reaction is proportional to the product of the concentrations of the species.

We call the constant of proportionality the rate constant.

Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical systems that can be read off from the network.

$$
\begin{gathered}
A+B \xrightarrow{k_{1}} 2 B \\
B \xrightarrow{k_{2}} A
\end{gathered}
$$

Let x_{A} and x_{B} denote the concentrations of the species A and B.
Each complex corresponds to a monomial:

$$
\begin{gathered}
A+B: x_{A} x_{B}, \quad 2 B: x_{B}^{2}, \quad A: x_{A}, \quad B: x_{B} \\
\frac{d}{d t} x_{A}=? \\
\frac{d}{d t} x_{B}=?
\end{gathered}
$$

Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical systems that can be read off from the network.

$$
\begin{gathered}
A+B \xrightarrow{k_{1}} 2 B \\
B \xrightarrow{k_{2}} A
\end{gathered}
$$

Let x_{A} and x_{B} denote the concentrations of the species A and B.
Each complex corresponds to a monomial:

$$
\begin{gathered}
A+B: x_{A} x_{B}, \quad 2 B: x_{B}^{2}, \quad A: x_{A}, \quad B: x_{B} \\
\frac{d}{d t} x_{A}=-k_{1} x_{A} x_{B} \\
\frac{d}{d t} x_{B}=?
\end{gathered}
$$

Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical systems that can be read off from the network.

$$
\begin{gathered}
A+B \xrightarrow{k_{1}} 2 B \\
B \xrightarrow{k_{2}} A
\end{gathered}
$$

Let x_{A} and x_{B} denote the concentrations of the species A and B.
Each complex corresponds to a monomial:

$$
\begin{gathered}
A+B: x_{A} x_{B}, \quad 2 B: x_{B}^{2}, \quad A: x_{A}, \quad B: x_{B}, \\
\frac{d}{d t} x_{A}=-k_{1} x_{A} x_{B}+k_{2} x_{B} \\
\frac{d}{d t} x_{B}=?
\end{gathered}
$$

Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical systems that can be read off from the network.

$$
\begin{gathered}
A+B \xrightarrow{k_{1}} 2 B \\
B \xrightarrow{k_{2}} A
\end{gathered}
$$

Let x_{A} and x_{B} denote the concentrations of the species A and B.
Each complex corresponds to a monomial:

$$
\begin{gathered}
A+B: x_{A} x_{B}, \quad 2 B: x_{B}^{2}, \quad A: x_{A}, \quad B: x_{B} \\
\frac{d}{d t} x_{A}=-k_{1} x_{A} x_{B}+k_{2} x_{B} \\
\frac{d}{d t} x_{B}=k_{1} x_{A} x_{B}
\end{gathered}
$$

Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical systems that can be read off from the network.

$$
\begin{gathered}
A+B \xrightarrow{k_{1}} 2 B \\
B \xrightarrow{k_{2}} A
\end{gathered}
$$

Let x_{A} and x_{B} denote the concentrations of the species A and B.
Each complex corresponds to a monomial:

$$
\begin{gathered}
A+B: x_{A} x_{B}, \quad 2 B: x_{B}^{2}, \quad A: x_{A}, \quad B: x_{B} \\
\frac{d}{d t} x_{A}=-k_{1} x_{A} x_{B}+k_{2} x_{B} \\
\frac{d}{d t} x_{B}=k_{1} x_{A} x_{B}-k_{2} x_{B}
\end{gathered}
$$

A larger example

$$
\begin{aligned}
& \dot{x_{A}}=k_{1} x_{B}^{2}-k_{2} x_{A}+k_{3} x_{D}-k_{4} x_{A} x_{C}+k_{5} x_{B} x_{E} \\
& \dot{x_{B}}=-2 k_{1} x_{B}^{2}+2 k_{2} x_{A}-k_{5} x_{B} x_{E}+k_{6} x_{D} \\
& \dot{x_{C}}=k_{3} x_{D}-k_{4} x_{A} x_{C}+k_{5} x_{B} x_{E} \\
& \dot{x_{D}}=-k_{3} x_{D}+k_{4} x_{A} x_{C}-k_{6} x_{D} \\
& \dot{x_{E}}=-k_{5} x_{B} x_{E}+k_{6} x_{D}
\end{aligned}
$$

An even larger example

Shuttle model for Wnt signaling pathway

MacLean, Rosen, Byrne, Harrington 2015

$$
\begin{gathered}
x_{1} \stackrel{k_{1}}{\stackrel{k_{2}}{\longrightarrow}} x_{2} \\
x_{2}+x_{4} \underset{k_{4}}{\stackrel{k_{3}}{\rightleftarrows}} x_{14} \xrightarrow{k_{5}} x_{2}+x_{5} \\
x_{5}+x_{8} \underset{k_{7}}{k_{6}} x_{16} \xrightarrow{k_{8}} x_{4}+x_{8} \\
x_{4}+x_{10} \underset{k_{10}}{\stackrel{k_{9}}{\rightleftarrows}} x_{18} \xrightarrow{k_{11}} x_{4}+\emptyset \\
\emptyset \xrightarrow[k_{12}]{\longrightarrow} x_{10} \\
x_{10} \xrightarrow{k_{13}} \emptyset
\end{gathered}
$$

$$
\begin{gathered}
x_{3}+x_{6} \underset{k_{15}}{\stackrel{k_{14}}{\rightleftarrows}} x_{15} \xrightarrow{k_{16}} x_{3}+x_{7} \\
x_{7}+x_{9} \underset{k_{18}}{\stackrel{k_{17}}{\rightleftarrows}} x_{17} \xrightarrow{k_{19}} x_{6}+x_{9} \\
x_{6}+x_{11} \underset{k_{21}}{\stackrel{k_{20}}{\rightleftarrows}} x_{19} \xrightarrow{k_{22}} x_{6}+\emptyset \\
x_{11} \xrightarrow[k_{23}]{ } \emptyset \\
x_{11}+x_{12} \underset{k_{25}}{\stackrel{k_{24}}{\longleftrightarrow}} x_{13}
\end{gathered}
$$

$$
\begin{aligned}
& x_{2} \underset{k_{27}}{\stackrel{k_{26}}{\rightleftarrows}} x_{3} \\
& x_{5} \underset{k_{29}}{\stackrel{k_{28}}{\rightleftarrows}} x_{7} \\
& x_{10} \underset{k_{31}}{\stackrel{k_{30}}{\rightleftarrows}} x_{11}
\end{aligned}
$$

Biochemical Reaction Networks \rightarrow Polynomials

Shuttle model for Wnt signaling pathway

$$
\begin{aligned}
& x_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} x_{2} \\
& x_{2}+x_{4} \underset{k_{4}}{\stackrel{k_{3}}{\rightleftarrows}} x_{14} \xrightarrow{k_{5}} x_{2}+x_{5} \\
& x_{5}+x_{8} \underset{k_{7}}{\stackrel{k_{8}}{\longrightarrow}} x_{16} \xrightarrow{k_{8}} x_{4}+x_{8} \\
& x_{4}+x_{10} \underset{k_{10}}{\stackrel{k_{9}}{\gtrless}} x_{18} \xrightarrow{k_{11}} x_{4}+\emptyset \\
& \emptyset \xrightarrow{k_{12}} x_{10} \\
& x_{10} \xrightarrow{k_{13}} \emptyset \\
& x_{3}+x_{6} \underset{k_{15}}{\stackrel{k_{14}}{\rightleftarrows}} x_{15} \xrightarrow{k_{16}} x_{3}+x_{7} \\
& x_{7}+x_{9} \underset{k_{18}}{\stackrel{k_{17}}{\rightleftarrows}} x_{17} \xrightarrow{k_{19}} x_{6}+x_{9} \\
& x_{6}+x_{11} \stackrel{k_{20}}{\stackrel{k_{21}}{\Longrightarrow}} x_{19} \xrightarrow{k_{22}} x_{6}+\emptyset \\
& x_{11} \xrightarrow{k_{23}} \emptyset \\
& x_{11}+x_{12} \underset{k_{25}}{\stackrel{k_{24}}{\underset{~}{2}}} x_{13} \\
& x_{2} \underset{k_{27}}{\stackrel{k_{26}}{\rightleftarrows}} x_{3} \\
& x_{5} \underset{k_{29}}{\stackrel{k_{28}}{\rightleftarrows}} x_{7} \\
& x_{10} \stackrel{k_{30}}{\stackrel{k_{31}}{\rightleftarrows}} x_{11}
\end{aligned}
$$

Biology \leftrightarrow Algebra and Geometry

Biology	Algebra and Geometry
Multistationarity	Real Algebraic Geometry
Experimental Design	Algebraic Matroids
Model Dynamics	Polyhedral Geometry
Model Selection	Solving Polynomial Systems

Model Selection \& Steady State Invariants

A steady-state invariant is a polynomial in the species concentrations (the x 's) and the rate constants (the k 's) that vanishes when the system is at steady state.

Steady-state invariants can be used to perform model selection by

- Comparing the behavior of the species concentrations with the algebraic relation defined by the steady-state invariant (Gunawardena 2007).
- Computing the maximum likelihood using numerical algebraic geometry (G-Davis-Ho-Bates-Harrington 2016)

Open Problems

- Computing elimination ideals Elimination ideals are used for model selection. (Exploring how to construct elimination ideals by looking at subnetworks with Heather Harrington, Nikki Meshkat, and Anne Shiu)
- Steady state degree The steady-state degree is the number of complex solutions to the steady-state equations for generic choice of parameters. (Ongoing work with Cvetelina Hill).
- Euclidean distance degree The ED degree quantifies the algebraic complexity of solving the goodness-of-fit problem. (Current work by Michael Adamer and Martin Helmer)

Thank you!

