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Inferring phylogenetic trees

Problem:
Given aligned DNA sequences from
a collection of species, find the tree
that best describes the species’ an-
cestral history.

Human : . . . ACCGTGCAACGTGAACGA . . .

Chimp : . . . ACCTTGCAAGGTAAACGA . . .

Gorilla : . . . ACCGTGCAACGTAAACTA . . .

Possible Trees:

!"#$%& '()#*& +,-)..$& !"#$%& '($)*& +,-#..)& !"#$%%&' ()*&+' ,-$*.'
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Tree-based Markov models

◦ Assumes evolution proceeds along
a n-leaf tree according to a Markov
process.

◦ Assumes site independence.

◦ Data are the observed fre-
quencies of all n-tuples of DNA
bases.

. . . ACCGTGCAACGTGAACGA . . .

. . . ACCTTGCAAGGTAAACGA . . .

. . . ACCGTGCAACGTAAACTA . . .

4.1. Secant Varieties in Statistics 103

 

  

X1 X2  X3

X4 X5

Figure 4.1.1: Bifurcating tree.

Proof. This was conjectured in [50, §7] and proved in [5] and in [65]. The Draisma-
Kuttler theorem [36] can be regarded as a generalization of this statement. !

Example 4.1.13. Let T be the bifurcating tree with five leaves in Figure 4.1.1. Let

P12|345 =




p11111 p11112 p11121 p11122 p11211 p11212 p11221 p11222

p12111 p12112 p12121 p12122 p12211 p12212 p12221 p12222

p21111 p21112 p21121 p21122 p21211 p21212 p21221 p21222

p22111 p22112 p22121 p22122 p22211 p22212 p22221 p22222




and

P123|45 =




p11111 p11112 p11121 p11122

p11211 p11212 p11221 p11222

p12111 p12112 p12121 p12122

p12211 p12212 p12221 p12222

p21111 p21112 p21121 p21122

p21211 p21212 p21221 p21222

p22111 p22112 p22121 p22122

p22211 p22212 p22221 p22222




.

These two matrices correspond to the two non-trivial splits of the tree T . The
phylogenetic ideal for r = 2 is generated by all 3×3 minors of the two matrices. !

For r = 3, there is also an explicit description in the case of bifurcating trees,
which follows from Theorem 4.1.10 and [66]. However, for the most interesting case
of DNA sequences (r = 4), it is still an open problem to describe the generating
sets of these ideals. It is known that certain polynomials of degrees 5, 6, and 9 are
needed as generators, but it is unknown whether these polynomials suffice [65, 88].

Another case where an interesting secant variety appears is the strand sym-
metric model (see Chapter 16 in [73]). In this model, we make restrictive assump-
tions on the allowable transition matrices. The restrictions are based on the fact

Gray nodes:

extant species (observable)

White nodes:

extinct species (hidden)
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Group-based Markov models

Parameters: A tree T and transition matrices for each edge.

Example: 4-state group-based Markov model (K3P) on the claw
tree K1,3

!"

#$" #%" #&"

M1 =




PA|A PC |A PG |A PT |A
PA|C PC |C PG |C PT |C
PA|G PC |G PG |G PT |G
PA|T PC |T PG |T PT |T




where Pi|j = P(X1 = i | Y = j).

X1,X2,X3 ∈ {A,C ,G ,T} are random variables and {A,C ,G ,T} is
viewed as the group Z2 ⊗ Z2.

Y ∈ {A,C ,G ,T} is a hidden (latent) random variable with distribution

(πA, πC , πG , πT ), e.g. P(Y = A) = πA.
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Group-based Markov models

Parameters: A tree T and transition matrices for each edge.

Example: 4-state group-based Markov model (K3P) on the claw
tree K1,3
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M1,M2,M3 =




α β γ δ
β α δ γ
γ δ α β
δ γ β α




X1,X2,X3 ∈ {A,C ,G ,T} are random variables and {A,C ,G ,T} is
viewed as the group Z2 ⊗ Z2.

Y ∈ {A,C ,G ,T} is a hidden (latent) random variable with distribution

(πA, πC , πG , πT ), e.g. P(Y = A) = πA.
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Group based models

Transition matrices

Cavender-Farris-Neyman (CFN) Jukes-Cantor (JC)

(
α β
β α

)



α β β β
β α β β
β β α β
β β β α




Kimura 2-parameter (K2P) Kimura 3-parameter (K3P)



α β γ γ
β α γ γ
γ γ α β
γ γ β α







α β γ δ
β α δ γ
γ δ α β
δ γ β α
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Models, Ideals, and Varieties

!"

#$" #%" #&"

The parameterization of the model MT (K3P) is

φT : R4 × R4 × R4 × R4 → R4×4×4

(π,M1,M2,M3) 7→
4∑

i=1

πiM1i ⊗M2i ⊗M3i

Image in R4×4×4 of a point in the parameter space is a probability table p
whose jklth entry is the joint probability that X1 = j ,X2 = k, and X3 = l .

pjkl =
4∑

i=1

πiM1ijM2ikM3il .

The ideal associated to MT is

IT = {f ∈ C[pjkl : j , k , l ∈ {A,C ,G ,T}] : f (p) = 0 for all p ∈MT}

The variety associated to MT is

VT = {p ∈ C4×4×4 : f (p) = 0 for all f ∈ IT} = Im φT =MT .
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Group-based models correspond to toric varieties

Theorem (Hendy-Penny 1993, Evans-Speed 1993)

In the Fourier coordinates, a group-based model is parametrized by
monomial functions in terms of the Fourier parameters. (See
Sturmfels-Sullivant 2005 for detailed description)

G : Z2 or Z2 × Z2

T : n taxon tree.

Σ(T ): set of splits of T .

For split A|B ∈ Σ(T ), associate a set of parameters: a
A|B
g where

g ∈ G .

The toric parameterization for the model is:

qg1,...,gn =

{∏
A|B∈Σ(T ) a

A|B
Σi∈Agi

if
∑n

i=1 gi = 0,

0 otherwise.
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Example

Kimura 3-parameter model

1

2

3

4

Σ(T ) =
{1|234, 2|134, 3|124,
4|123, 12|34}

Parameterization:

qg1g2g3g4 = a
1|234
g1 a

2|134
g2 a

3|124
g3 a

4|123
g4 a

12|34
g1+g2

Example:

qACGT = a
1|234
A a

2|134
C a

3|124
G a

4|123
T a

12|34
C
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Mixture models
Why Mixture Models?

Differing gene tree topologies
Could explain evolution with recombination

Allman, Petrović, Rhodes, and Sullivant Identifiability of Phylogenetic Mixture Models

Due to biological mechanisms, such as
incomplete lineage sorting or horizontal
gene transfer, sometimes we want to con-
sider the mixture of two tree models.

T1, T2: n leaf trees

MT1 , MT2 : tree-based
models

φT1 , φT2 : parameterization
maps of MT1 and MT2

α: the mixing parameter

The parameterization of the mixture model MT1,T2 is

ψT1,T2 : ΘT1 ×ΘT2 × [0, 1]→ ∆4n−1 ⊆ R4n

(θ1, θ2, α) 7→ αφT1 (θ1) + (1− α)φT2 (θ2)

The corresponding variety of MT1,T2 is a join variety.

VT1,T2 =MT1,T2 = Im ψT1,T2 = Join(VT1 ,VT2 )
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Open Problems for mixture models

Determine invariants for mixture models These invariants can
be used for model selection and also to prove theoretical results
regarding identifiability.

Identifiability Determine when

VT1,T2 ⊆ VT3,T4

To establish identifiability, one usually needs to know

1 The dimension of VT1,T2 and VT3,T4 (current work with Hector
Baños, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross,
Pamela Harris, Robert Krone, Colby Long, Allen Stewart, and
Robert Walker).

2 Some invariants of MT1,T2 .
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ReactionNetworks.m2
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Motivation

How do cells make decisions?
Motivation: how do cells make decisions?

Plasma 
membrane

Protein

mRNA

Gene Transcription 
factor

Cytoplasm

Nucleus

Extracellular 
environment 

changes

Cellular sensing

Internal evaluation 
of environment via 
signal transduction

Ligand/ signaling 
molecules

Receptors

Signal  
transduction

Cellular response
Cellular response/

outcome

HA Harrington (Oxford) Model discrimination 18 January 2014 3 / 24
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Chemical Reaction Network Theory

A chemical reaction network is a given by a triple (S, C,R) of finite sets.

Species, S = {S1, . . . ,Sd}: molecules undergoing a series of
chemical reactions.

Complexes, C = {C1, . . . ,Cn}: linear combinations of the species
representing those used and produced in each reaction (i.e.
reactants and products).

Reactions, R = {yj → y ′j }: directed graph with the complexes as
vertices, yj , y

′
j ∈ C

Example

A + B → 2B

B → A

S = {A,B}, C = {A + B, 2B,B,A}, R = {A + B → 2B,B → A}
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Mass action kinetics

A 2B

A+C D

B+E

S = {A,B,C ,D,E}
C = {A, 2B,A + C ,D,B + E}

We will work in the deterministic setting with the assumption of mass
action kinetics.

Definition

Mass-action kinetics: rate of reaction is proportional to the product of
the concentrations of the species.

We call the constant of proportionality the rate constant.
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Mass action kinetics

A 2B

A+C D

B+E

k1

k2

k3
k4

k6k5

S = {A,B,C ,D,E}
C = {A, 2B,A + C ,D,B + E}

We will work in the deterministic setting with the assumption of mass
action kinetics.

Definition

Mass-action kinetics: rate of reaction is proportional to the product of
the concentrations of the species.

We call the constant of proportionality the rate constant.
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A + B
k1−→ 2B

B
k2−→ A

Let xA and xB denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A + B : xAxB , 2B : x2
B , A : xA, B : xB ,

d

dt
xA = ?

d

dt
xB = ?
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A + B
k1−→ 2B

B
k2−→ A

Let xA and xB denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A + B : xAxB , 2B : x2
B , A : xA, B : xB ,

d

dt
xA = −k1xAxB

d

dt
xB = ?
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A + B
k1−→ 2B

B
k2−→ A

Let xA and xB denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A + B : xAxB , 2B : x2
B , A : xA, B : xB ,

d

dt
xA = −k1xAxB + k2xB

d

dt
xB = ?
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A + B
k1−→ 2B

B
k2−→ A

Let xA and xB denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A + B : xAxB , 2B : x2
B , A : xA, B : xB ,

d

dt
xA = −k1xAxB + k2xB

d

dt
xB = k1xAxB
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A + B
k1−→ 2B

B
k2−→ A

Let xA and xB denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A + B : xAxB , 2B : x2
B , A : xA, B : xB ,

d

dt
xA = −k1xAxB + k2xB

d

dt
xB = k1xAxB − k2xB
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A larger example

A 2B

A+C D

B+E

k1

k2

k3
k4

k6k5

ẋA = k1x2
B − k2xA + k3xD − k4xAxC + k5xBxE

˙xB = −2k1x2
B+2k2xA − k5xBxE + k6xD

˙xC = k3xD − k4xAxC + k5xBxE

˙xD = −k3xD + k4xAxC − k6xD

ẋE = −k5xBxE + k6xD
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An even larger example

Shuttle model for Wnt signaling pathway
MacLean, Rosen, Byrne, Harrington 2015

The second column in Table 1 indicates the biological meaning of the 19 species. The symbols
in the last column are those used in the presentation of the Wnt shuttle model in [17].

The 19 species in the model interact according to the 31 reactions given in Table 2. Each
reaction comes with a rate constant ki. These are the coordinates of our parameter vector k.

Reaction Explanation

x1

k1
// x2

k2

oo (In)activation of dishevelled, depends on Wnt

x2 + x4

k3
// x14

k4

oo

k5
// x2 + x5 Destruction complex active ! inactive

x5 + x8

k6
// x16

k7

oo

k8
// x4 + x8 Destruction complex inactive ! active

x4 + x10

k9
// x18

k10

oo

k11
// x4 + ; Destruction complex-dependent �-catenin degradation

; k12
// x10 �-catenin production

x10
k13

// ; Destruction complex-independent �-catenin degradation

x3 + x6

k14
// x15

k15

oo

k16
// x3 + x7 Destruction complex active ! inactive (nucleus)

x7 + x9

k17
// x17

k18

oo

k19
// x6 + x9 Destruction complex inactive ! active (nucleus)

x6 + x11

k20
// x19

k21

oo

k22
// x6 + ; Destruction complex-dependent �-catenin degradation (nucleus)

x11
k23

// ; Destruction complex-independent �-catenin degradation (nucleus)

x11 + x12

k24
// x13

k25

oo �-catenin binding to TCF (nucleus)

x2

k26
// x3

k27

oo Shuttling of active dishevelled

x5

k28
// x7

k29

oo Shuttling of inactive-form destruction complex

x10

k30
// x11

k31

oo Shuttling of �-catenin

Table 2: The 31 reactions in the Wnt shuttle model.

The 31 reactions in Table 2 translate into a dynamical system ẋ =  (x;k). Here  is a
vector-valued function of the vectors of species concentrations x and rate constants k. The
choice of  is up to the modeler. In this paper, we assume that  represents the law of
mass action [13, §2.1.1]. This is precisely what is used in [17] for the Wnt shuttle model.
The resulting dynamical system is (1). We refer to [4,7,12,22,25] and their many references
for mass action kinetics and its variants. In summary, Table 2 translates into the dynamical
system (1) under the law of mass action. The five relations in (2) constitute a basis for the
linear space of conservation relations of the model in Table 2 assuming mass action kinetics.
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Biochemical Reaction Networks → Polynomials

Shuttle model for Wnt signaling pathway

The second column in Table 1 indicates the biological meaning of the 19 species. The symbols
in the last column are those used in the presentation of the Wnt shuttle model in [17].

The 19 species in the model interact according to the 31 reactions given in Table 2. Each
reaction comes with a rate constant ki. These are the coordinates of our parameter vector k.

Reaction Explanation

x1

k1
// x2

k2

oo (In)activation of dishevelled, depends on Wnt

x2 + x4

k3
// x14

k4

oo

k5
// x2 + x5 Destruction complex active ! inactive

x5 + x8

k6
// x16

k7

oo

k8
// x4 + x8 Destruction complex inactive ! active

x4 + x10

k9
// x18

k10

oo

k11
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oo
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The second column in Table 1 indicates the biological meaning of the 19 species. The symbols
in the last column are those used in the presentation of the Wnt shuttle model in [17].

The 19 species in the model interact according to the 31 reactions given in Table 2. Each
reaction comes with a rate constant ki. These are the coordinates of our parameter vector k.

Reaction Explanation

x1

k1
// x2

k2

oo (In)activation of dishevelled, depends on Wnt

x2 + x4

k3
// x14

k4

oo

k5
// x2 + x5 Destruction complex active ! inactive

x5 + x8

k6
// x16

k7

oo

k8
// x4 + x8 Destruction complex inactive ! active

x4 + x10

k9
// x18

k10

oo

k11
// x4 + ; Destruction complex-dependent �-catenin degradation

; k12
// x10 �-catenin production

x10
k13

// ; Destruction complex-independent �-catenin degradation

x3 + x6

k14
// x15

k15

oo

k16
// x3 + x7 Destruction complex active ! inactive (nucleus)

x7 + x9

k17
// x17

k18

oo

k19
// x6 + x9 Destruction complex inactive ! active (nucleus)

x6 + x11

k20
// x19

k21

oo

k22
// x6 + ; Destruction complex-dependent �-catenin degradation (nucleus)

x11
k23

// ; Destruction complex-independent �-catenin degradation (nucleus)

x11 + x12

k24
// x13

k25

oo �-catenin binding to TCF (nucleus)

x2

k26
// x3

k27

oo Shuttling of active dishevelled

x5

k28
// x7

k29

oo Shuttling of inactive-form destruction complex

x10

k30
// x11

k31

oo Shuttling of �-catenin

Table 2: The 31 reactions in the Wnt shuttle model.

The 31 reactions in Table 2 translate into a dynamical system ẋ =  (x;k). Here  is a
vector-valued function of the vectors of species concentrations x and rate constants k. The
choice of  is up to the modeler. In this paper, we assume that  represents the law of
mass action [13, §2.1.1]. This is precisely what is used in [17] for the Wnt shuttle model.
The resulting dynamical system is (1). We refer to [4,7,12,22,25] and their many references
for mass action kinetics and its variants. In summary, Table 2 translates into the dynamical
system (1) under the law of mass action. The five relations in (2) constitute a basis for the
linear space of conservation relations of the model in Table 2 assuming mass action kinetics.
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ALGEBRAIC SYSTEMS BIOLOGY:
A CASE STUDY FOR THE WNT PATHWAY

ELIZABETH GROSS, HEATHER A. HARRINGTON, ZVI ROSEN, AND BERND STURMFELS

Abstract. Steady state analysis of dynamical systems for biological networks give rise to
algebraic varieties in high-dimensional spaces whose study is of interest in their own right.
We demonstrate this for the shuttle model of the Wnt signaling pathway. Here the variety
is described by a polynomial system in 19 unknowns and 36 parameters. Current methods
from computational algebraic geometry and combinatorics are applied to analyze this model.

1. Introduction

The theory of biochemical reaction networks is fundamental for systems biology [13, 27].
It is based on a wide range of mathematical fields, including dynamical systems, numerical
analysis, optimization, combinatorics, probability, and, last but not least, algebraic geometry.
There are numerous articles that use algebraic geometry in the study of biochemical reaction
networks, especially those arising from mass action kinetics. A tiny selection is [4,7,12,22,25].

We here perform a detailed analysis of one specific system, namely the shuttle model for the
Wnt signaling pathway, introduced recently by MacLean, Rosen, Byrne, and Harrington [17].
Our aim is twofold: to demonstrate how biology can lead to interesting questions in algebraic
geometry and to apply state-of-the-art techniques from computational algebra to biology.

The dynamical system we study consists of the following 19 ordinary di↵erential equations.
Their derivation and the relevant background from biology will be presented in Section 2.

(1)

ẋ1 = �k1x1 + k2x2

ẋ2 = k1x1 � (k2 + k26)x2 + k27x3 � k3x2x4 + (k4 + k5)x14

ẋ3 = k26x2 � k27x3 � k14x3x6 + (k15 + k16)x15

ẋ4 = �k3x2x4 � k9x4x10 + k4x14 + k8x16 + (k10 + k11)x18

ẋ5 = �k28x5 + k29x7 � k6x5x8 + k5x14 + k7x16

ẋ6 = �k14x3x6 � k20x6x11 + k15x15 + k19x17 + (k21 + k22)x19

ẋ7 = k28x5 � k29x7 � k17x7x9 + k16x15 + k18x17

ẋ8 = �ẋ16 = �k6x5x8 + (k7 + k8)x16

ẋ9 = �ẋ17 = �k17x7x9 + (k18 + k19)x17

ẋ10 = k12 � (k13 + k30)x10 � k9x4x10 + k31x11 + k10x18

ẋ11 = �k23x11 + k30x10 � k31x11 � k20x6x11 � k24x11x12 + k25x13 + k21x19

ẋ12 = �ẋ13 = �k24x11x12 + k25x13

ẋ14 = k3x2x4 � (k4 + k5)x14

ẋ15 = k14x3x6 � (k15 + k16)x15

ẋ18 = k9x4x10 � (k10 + k11)x18

ẋ19 = k20x6x11 � (k21 + k22)x19

1
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Biology ↔ Algebra and Geometry

Im
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xi + xj xi + xl k

Discriminant, Ex. 4.3
Prop. 6.2, Ex. 8.1 Matroids

 Prop. 5.2, Ex. 8.2

Model rejection via Circuits
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Parameter estimation, Cor. 7.2, Ex. 8.4
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Model Selection & Steady State Invariants

A steady-state invariant is a polynomial in the species
concentrations (the x ’s) and the rate constants (the k’s) that
vanishes when the system is at steady state.

Steady-state invariants can be used to perform model selection by

Comparing the behavior of the
species concentrations with the
algebraic relation defined by
the steady-state invariant
(Gunawardena 2007).

Computing the maximum likelihood
using numerical algebraic geometry
(G-Davis-Ho-Bates-Harrington 2016)
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Open Problems

Computing elimination ideals Elimination ideals are used for
model selection. (Exploring how to construct elimination ideals by
looking at subnetworks with Heather Harrington, Nikki Meshkat,
and Anne Shiu)

Steady state degree The steady-state degree is the number of
complex solutions to the steady-state equations for generic choice of
parameters. (Ongoing work with Cvetelina Hill).

Euclidean distance degree The ED degree quantifies the algebraic
complexity of solving the goodness-of-fit problem. (Current work by
Michael Adamer and Martin Helmer)
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Thank you!

Thank you!
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