Vector bundles of conformal blocks are vector bundles on the moduli stack of Deligne-Mumford stable n-pointed genus g curves *M _{g,n}* that arise in conformal field theory. Each triple

Most of the functions are in this package are for *S _{n}* symmetric divisors and/or symmetrizations of divisors, but a few functions are included for non-symmetric divisors as well.

Some of the documentation nodes refer to books, papers, and preprints. Here is a link to the Bibliography.

NEW in version 2.1: the package has been rewritten in a more object-oriented way, and the basic Lie algebra functions have been moved into a separate package called LieTypes.

- Dave Swinarski <dswinarski@fordham.edu>

- Types
- ConformalBlockVectorBundle -- the class of conformal block vector bundles on the moduli space of n-pointed genus g curves
- SymmetricDivisorM0nbar -- the class of S_n symmetric divisors on the moduli space of stable n-pointed genus 0 curves

- Functions and commands
- basisOfSymmetricCurves -- produces a basis of symmetric curves
- canonicalDivisorM0nbar -- returns the class of the canonical divisor on the moduli space of stable n-pointed genus 0 curves
- coefficientList -- the coefficients of a symmetric divisor D in the standard basis
- conformalBlockDegreeM04bar -- computes the degree of a conformal block bundle on $\bar{M}_{0,4}$
- conformalBlockRank -- computes the rank of the conformal block vector bundle
- conformalBlockVectorBundle -- creates an object of class ConformalBlockVectorBundle
- FCurveDotConformalBlockDivisor -- intersection of an F-curve with a conformal block divisor
- FdotBjIntMat -- matrix of intersection numbers between F-curves and divisors on $\bar{M}_{0,n}$
- isExtremalSymmetricFDivisor -- tests whether an S_n symmetric divisor spans an extremal ray of the cone of symmetric F-divisors
- isSymmetricFDivisor -- checks whether a symmetric divisor intersects all the F-curves nonnegatively
- kappaDivisorM0nbar -- the class of the divisor kappa
- killsCurves -- given an S_n symmetric divisor D, produces a list of symmetric F-curves C such that C dot D = 0
- psiDivisorM0nbar -- returns the class of the divisor $\Psi$
- scale -- reduces a list or divisor by the gcd of its coefficients
- symmetricCurveDotDivisorM0nbar -- the intersection number of a symmetric F-curve C with the symmetric divisor D
- symmetricDivisorM0nbar -- create a symmetric divisor on the moduli space of stable pointed genus 0 curves
- symmetricFCurves -- a list of all symmetric F-curves given n
- symmetrizedConformalBlockDivisor -- computes the symmetrization of the first Chern class of a conformal block vector bundle

- Methods
- - SymmetricDivisorM0nbar -- negate a symmetric divisor
- coefficientList(SymmetricDivisorM0nbar), see coefficientList -- the coefficients of a symmetric divisor D in the standard basis
- conformalBlockDegreeM04bar(ConformalBlockVectorBundle), see conformalBlockDegreeM04bar -- computes the degree of a conformal block bundle on $\bar{M}_{0,4}$
- conformalBlockRank(ConformalBlockVectorBundle), see conformalBlockRank -- computes the rank of the conformal block vector bundle
- FCurveDotConformalBlockDivisor(List,ConformalBlockVectorBundle), see FCurveDotConformalBlockDivisor -- intersection of an F-curve with a conformal block divisor
- isExtremalSymmetricFDivisor(SymmetricDivisorM0nbar), see isExtremalSymmetricFDivisor -- tests whether an S_n symmetric divisor spans an extremal ray of the cone of symmetric F-divisors
- isSymmetricFDivisor(SymmetricDivisorM0nbar), see isSymmetricFDivisor -- checks whether a symmetric divisor intersects all the F-curves nonnegatively
- killsCurves(SymmetricDivisorM0nbar), see killsCurves -- given an S_n symmetric divisor D, produces a list of symmetric F-curves C such that C dot D = 0
- Number * SymmetricDivisorM0nbar -- multiply a symmetric divisor by a number
- scale(SymmetricDivisorM0nbar), see scale -- reduces a list or divisor by the gcd of its coefficients
- symmetricCurveDotDivisorM0nbar(List,SymmetricDivisorM0nbar), see symmetricCurveDotDivisorM0nbar -- the intersection number of a symmetric F-curve C with the symmetric divisor D
- SymmetricDivisorM0nbar + SymmetricDivisorM0nbar -- add two $S_n$ symmetric divisors
- SymmetricDivisorM0nbar == SymmetricDivisorM0nbar -- test equality of two symmetric divisor classes on $\bar{M}_{0,n}$
- symmetrizedConformalBlockDivisor(ConformalBlockVectorBundle), see symmetrizedConformalBlockDivisor -- computes the symmetrization of the first Chern class of a conformal block vector bundle