next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Macaulay2Doc :: describe

describe -- real description

Description

describe x -- returns an expression containing the real description of x, bypassing the feature that causes certain types of things to acquire, for brevity, the names of global variables to which they are assigned. For polynomial rings, it also displays the options used at creation.

i1 : R = ZZ/101[a,b,c_1,c_2];
i2 : R

o2 = R

o2 : PolynomialRing
i3 : describe R

      ZZ
o3 = ---[a..b, c ..c , Degrees => {4:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1]
     101        1   2                                                  {GRevLex => {4:1}  }
                                                                       {Position => Up    }
i4 : toString describe R

o4 = (ZZ/101)[a..b, c_1..c_2, Degrees => {4:1}, Heft => {1}, MonomialOrder =>
     VerticalList{MonomialSize => 32, GRevLex => {4:1}, Position => Up},
     DegreeRank => 1]
i5 : toExternalString R

o5 = (ZZ/101)(monoid[a..b, c_1..c_2, Degrees => {4:1}, Heft => {1},
     MonomialOrder => VerticalList{MonomialSize => 32, GRevLex => {4:1},
     Position => Up}, DegreeRank => 1])
i6 : QQ[x,d,WeylAlgebra=>{x=>d}]

o6 = QQ[x, d]

o6 : PolynomialRing, 1 differential variables
i7 : describe oo

o7 = QQ[x, d, Degrees => {2:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1, WeylAlgebra => {x => d}]
                                                              {GRevLex => {2:1}  }
                                                              {Position => Up    }

See also

Ways to use describe :

For the programmer

The object describe is a method function with a single argument.