Given a list of generators of an ideal I, this function creates an embedding and then runs a cascade of homotopies. The output is a NumericalVariety that contains a WitnessSet for each pure dimensional variety contained in V(I).
i1 : R = CC[x,y,z]; |
i2 : L = { z*(x+y), z*(x-y) }; |
i3 : WitSets = cascade(L) o3 = WitSets o3 : NumericalVariety |
i4 : W=first WitSets#2 o4 = W o4 : WitnessSet |
The function cascade extends the ring of the inputted system with slack variables beginning with zz. Each witness set in contains the equations, points, and slices of the embedded system.
i5 : W#Equations o5 = ideal ((- .380139 + .924929*ii)zz1 + (.547606 + .836736*ii)zz2 - x*z - ------------------------------------------------------------------------ y*z, (.45571 - .890128*ii)zz1 + (- .663772 - .747935*ii)zz2 - x*z + y*z, ------------------------------------------------------------------------ - zz1 + (.537862 + .843033*ii)zz2) o5 : Ideal of CC {x, y, z, zz1, zz2} 53 |
i6 : W#Points o6 = {{.148619-.161802*ii, .45886-1.03272*ii, 3.21921e-32+7.65273e-33*ii, -2.28184e-32-4.87389e-33*ii, -1.6382e-32+1.66152e-32*ii}} o6 : VerticalList |
i7 : W#Slice o7 = | .205377+.978683ii .673112+.739541ii .943327-.331864ii | -.759495+.650513ii -.89022-.45553ii -.972487+.232959ii ------------------------------------------------------------------------ -.911067-.412259ii .497812+.867285ii -.883724+.468009ii | -.595572-.803302ii -.236638-.971598ii .871298-.490754ii | 2 6 o7 : Matrix CC <--- CC 53 53 |
Coefficient ring of the polynomial system must be of type ComplexField.
The object cascade is a method function with options.