Evaluate f at a point.
i1 : R=CC[x,y,z] o1 = R o1 : PolynomialRing |
i2 : f=z*x+y o2 = x*z + y o2 : R |
i3 : subPoint(f,{x,y},{.1,.2}) o3 = .1z + .2 o3 : R |
i4 : subPoint(f,{x,y,z},{.1,.2,.3},SpecifyVariables=>{y}) o4 = x*z + .2 o4 : R |
i5 : R=CC_200[x,y,z] o5 = R o5 : PolynomialRing |
i6 : f=z*x+y o6 = x*z + y o6 : R |
i7 : subPoint(f,{x,y,z},{.1,.2,.3},SubIntoCC=>true) o7 = .23 o7 : CC (of precision 53) |
i8 : subPoint(f,{x,y,z},{.1234567890123456789012345678901234567890p200, 0,1},SubIntoCC=>true,M2Precision=>200) o8 = .123456789012345678901234567890123456789 o8 : CC (of precision 200) |
When SubIntoCC is set to true then unset variables will be set to zero or unexpected values.
The object subPoint is a method function with options.