The keys of this hash table are the divisor classes (degrees) whose cohomology vector has already been computed. The value of the hash table for this key is a list of two things: the cohomology vector, and a list representing the denominators which appear for this degree.
i1 : needsPackage "ReflexivePolytopesDB" o1 = ReflexivePolytopesDB o1 : Package |
i2 : topes = kreuzerSkarke(5, Limit => 20); using offline data file: ks5-n50.txt |
i3 : A = matrix topes_15 o3 = | 1 1 0 1 -1 -2 1 | | 0 2 0 0 -4 0 6 | | 0 0 1 0 2 -1 -4 | | 0 0 0 2 -2 0 0 | 4 7 o3 : Matrix ZZ <--- ZZ |
i4 : P = convexHull A o4 = P o4 : Polyhedron |
i5 : X = normalToricVariety P o5 = X o5 : NormalToricVariety |
i6 : H = cohomCalg X o6 = MutableHashTable{} o6 : MutableHashTable |
Notice that the hash table H is empty, as we haven't tried computing any cohomology vectors yet.
i7 : cohomCalg(X, {-4, 10, -9}) o7 = {0, 0, 0, 12960, 0} o7 : List |
i8 : for i from 0 to dim X list rank HH^i(X, OO_X(-4, 10, -9)) o8 = {0, 0, 0, 12960, 0} o8 : List |
i9 : peek cohomCalg X o9 = MutableHashTable{{-4, 10, -9} => {{0, 0, 0, 12960, 0}, {{3, ------------------------------------------------------------------------ 1x0*x1*x2*x6}, {3, 1x0*x1*x2*x3*x6}, {3, 1x0*x1*x2*x4*x6}}}} |