The minimal resolution of a module over a complete intersection has betti numbers that grow as a polynomial of degree at most equal to the codimension-1. The complexity is one more than the degree of this polynomial.
i1 : setRandomSeed 0 o1 = 0 |
i2 : S = ZZ/101[a,b,c,d]; |
i3 : ff1 = matrix"a3,b3,c3,d3"; 1 4 o3 : Matrix S <--- S |
i4 : ff =ff1*random(source ff1, source ff1); 1 4 o4 : Matrix S <--- S |
i5 : R = S/ideal ff; |
i6 : M = highSyzygy (R^1/ideal"a2b2"); |
i7 : complexity M o7 = 2 |
i8 : mf = matrixFactorization (ff, M) o8 = {{7} | -a -36b 0 a |, {8} | 35a2 48b 0 -33b 0 |, {6} | 0 36 {6} | b2 a2 0 0 | {8} | -35b2 -35a 0 0 0 | {7} | -36 0 {7} | 0 0 b a | {8} | 0 0 33b2 33a -33b2 | {7} | 1 0 {8} | 0 0 -43a2 -33b 0 | ------------------------------------------------------------------------ 0 |} 36 | 0 | o8 : List |
i9 : complexity mf o9 = 2 |
i10 : betti res (R^1/ideal"a2b2", LengthLimit=>10) 0 1 2 3 4 5 6 7 8 9 10 o10 = total: 1 1 2 3 4 5 6 7 8 9 10 0: 1 . . . . . . . . . . 1: . . . . . . . . . . . 2: . . . . . . . . . . . 3: . 1 2 1 . . . . . . . 4: . . . 2 4 2 . . . . . 5: . . . . . 3 6 3 . . . 6: . . . . . . . 4 8 4 . 7: . . . . . . . . . 5 10 o10 : BettiTally |
The object complexity is a method function.