CompleteIntersectionResolutions : Index
-
ARanks -- ranks of the modules A_i(d) in a matrixFactorization
-
ARanks(List) -- ranks of the modules A_i(d) in a matrixFactorization
-
Augmentation -- Option for matrixFactorization
-
BGGL -- Exterior module to linear complex
-
bMaps -- list the maps d_p:B_1(p)-->B_0(p) in a matrixFactorization
-
bMaps(List) -- list the maps d_p:B_1(p)-->B_0(p) in a matrixFactorization
-
BRanks -- ranks of the modules B_i(d) in a matrixFactorization
-
BRanks(List) -- ranks of the modules B_i(d) in a matrixFactorization
-
Check -- Option for matrixFactorization
-
CompleteIntersectionResolutions -- "Resolution over a Complete Intersection"
-
complexity -- complexity of a module over a complete intersection
-
complexity(List) -- complexity of a module over a complete intersection
-
complexity(Module) -- complexity of a module over a complete intersection
-
cosyzygyRes -- cosyzygy chain of a Cohen-Macaulay module over a Gorenstein ring
-
cosyzygyRes(Module) -- cosyzygy chain of a Cohen-Macaulay module over a Gorenstein ring
-
cosyzygyRes(ZZ,Module) -- cosyzygy chain of a Cohen-Macaulay module over a Gorenstein ring
-
dMaps -- list the maps d(p):A_1(p)--> A_0(p) in a matrixFactorization
-
dMaps(List) -- list the maps d(p):A_1(p)--> A_0(p) in a matrixFactorization
-
dualWithComponents -- dual module preserving direct sum information
-
dualWithComponents(Module) -- dual module preserving direct sum information
-
EisenbudShamash -- Computes the Eisenbud-Shamash Complex
-
EisenbudShamash(Matrix,ChainComplex,ZZ) -- Computes the Eisenbud-Shamash Complex
-
EisenbudShamash(Ring,ChainComplex,ZZ) -- Computes the Eisenbud-Shamash Complex
-
EisenbudShamashTotal -- Precursor complex of total Ext
-
EisenbudShamashTotal(...,Check=>...) -- Precursor complex of total Ext
-
EisenbudShamashTotal(...,Grading=>...) -- Precursor complex of total Ext
-
EisenbudShamashTotal(...,Variables=>...) -- Precursor complex of total Ext
-
EisenbudShamashTotal(Module) -- Precursor complex of total Ext
-
evenExtModule -- even part of Ext^*(M,k) over a complete intersection as module over CI operator ring
-
evenExtModule(...,OutRing=>...) -- even part of Ext^*(M,k) over a complete intersection as module over CI operator ring
-
evenExtModule(Module) -- even part of Ext^*(M,k) over a complete intersection as module over CI operator ring
-
expo -- returns a set corresponding to the basis of a divided power
-
expo(ZZ,List) -- returns a set corresponding to the basis of a divided power
-
expo(ZZ,ZZ) -- returns a set corresponding to the basis of a divided power
-
exteriorExtModule -- Ext(M,k) or Ext(M,N) as a module over an exterior algebra
-
exteriorExtModule(Matrix,Module) -- Ext(M,k) or Ext(M,N) as a module over an exterior algebra
-
exteriorExtModule(Matrix,Module,Module) -- Ext(M,k) or Ext(M,N) as a module over an exterior algebra
-
exteriorHomologyModule -- Make the homology of a complex into a module over an exterior algebra
-
exteriorHomologyModule(Matrix,ChainComplex) -- Make the homology of a complex into a module over an exterior algebra
-
exteriorTorModule -- Tor as a module over an exterior algebra or bigraded algebra
-
exteriorTorModule(Matrix,Module) -- Tor as a module over an exterior algebra or bigraded algebra
-
exteriorTorModule(Matrix,Module,Module) -- Tor as a module over an exterior algebra or bigraded algebra
-
extIsOnePolynomial -- check whether the Hilbert function of Ext(M,k) is one polynomial
-
extIsOnePolynomial(Module) -- check whether the Hilbert function of Ext(M,k) is one polynomial
-
ExtModule -- Ext^*(M,k) over a complete intersection as module over CI operator ring
-
ExtModule(Module) -- Ext^*(M,k) over a complete intersection as module over CI operator ring
-
ExtModuleData -- Even and odd Ext modules and their regularity
-
ExtModuleData(Module) -- Even and odd Ext modules and their regularity
-
extVsCohomology -- compares Ext_S(M,k) as exterior module with coh table of sheaf Ext_R(M,k)
-
extVsCohomology(Matrix,Module) -- compares Ext_S(M,k) as exterior module with coh table of sheaf Ext_R(M,k)
-
finiteBettiNumbers -- betti numbers of finite resolution computed from a matrix factorization
-
finiteBettiNumbers(List) -- betti numbers of finite resolution computed from a matrix factorization
-
freeExteriorSummand -- find the free summands of a module over an exterior algebra
-
freeExteriorSummand(Module) -- find the free summands of a module over an exterior algebra
-
Grading -- Option for EisenbudShamashTotal, newExt
-
hf -- Computes the hilbert function in a range of degrees
-
hf(List,Module) -- Computes the hilbert function in a range of degrees
-
hf(Sequence,Module) -- Computes the hilbert function in a range of degrees
-
hfModuleAsExt -- predict betti numbers of moduleAsExt(M,R)
-
hfModuleAsExt(ZZ,Module,ZZ) -- predict betti numbers of moduleAsExt(M,R)
-
highSyzygy -- Returns a syzygy module one beyond the regularity of Ext(M,k)
-
highSyzygy(...,Optimism=>...) -- Returns a syzygy module one beyond the regularity of Ext(M,k)
-
highSyzygy(Module) -- Returns a syzygy module one beyond the regularity of Ext(M,k)
-
hMaps -- list the maps h(p): A_0(p)--> A_1(p) in a matrixFactorization
-
hMaps(List) -- list the maps h(p): A_0(p)--> A_1(p) in a matrixFactorization
-
HomWithComponents -- computes Hom, preserving direct sum information
-
HomWithComponents(Module,Module) -- computes Hom, preserving direct sum information
-
infiniteBettiNumbers -- betti numbers of finite resolution computed from a matrix factorization
-
infiniteBettiNumbers(List,ZZ) -- betti numbers of finite resolution computed from a matrix factorization
-
isLinear -- check whether matrix entries have degree 1
-
isLinear(Matrix) -- check whether matrix entries have degree 1
-
isQuasiRegular -- tests a matrix or sequence or list for quasi-regularity on a module
-
isQuasiRegular(List,Module) -- tests a matrix or sequence or list for quasi-regularity on a module
-
isQuasiRegular(Matrix,Module) -- tests a matrix or sequence or list for quasi-regularity on a module
-
isQuasiRegular(Sequence,Module) -- tests a matrix or sequence or list for quasi-regularity on a module
-
isStablyTrivial -- returns true if the map goes to 0 under stableHom
-
isStablyTrivial(Matrix) -- returns true if the map goes to 0 under stableHom
-
koszulExtension -- creates the Koszul extension complex of a map
-
koszulExtension(ChainComplex,ChainComplex,Matrix,Matrix) -- creates the Koszul extension complex of a map
-
Layered -- Option for matrixFactorization
-
layeredResolution -- layered finite and infinite layered resolutions of CM modules
-
layeredResolution(...,Check=>...) -- layered finite and infinite layered resolutions of CM modules
-
layeredResolution(...,Verbose=>...) -- layered finite and infinite layered resolutions of CM modules
-
layeredResolution(Matrix,Module) -- layered finite and infinite layered resolutions of CM modules
-
layeredResolution(Matrix,Module,ZZ) -- layered finite and infinite layered resolutions of CM modules
-
Lift -- Option for newExt
-
makeFiniteResolution -- finite resolution of a matrix factorization module M
-
makeFiniteResolution(Matrix,List) -- finite resolution of a matrix factorization module M
-
makeFiniteResolutionCodim2 -- Maps associated to the finite resolution of a high syzygy module in codim 2
-
makeFiniteResolutionCodim2(...,Check=>...) -- Maps associated to the finite resolution of a high syzygy module in codim 2
-
makeFiniteResolutionCodim2(Matrix,List) -- Maps associated to the finite resolution of a high syzygy module in codim 2
-
makeHomotopies -- returns a system of higher homotopies
-
makeHomotopies(Matrix,ChainComplex) -- returns a system of higher homotopies
-
makeHomotopies(Matrix,ChainComplex,ZZ) -- returns a system of higher homotopies
-
makeHomotopies1 -- returns a system of first homotopies
-
makeHomotopies1(Matrix,ChainComplex) -- returns a system of first homotopies
-
makeHomotopies1(Matrix,ChainComplex,ZZ) -- returns a system of first homotopies
-
makeHomotopiesOnHomology -- Homology of a complex as exterior module
-
makeHomotopiesOnHomology(Matrix,ChainComplex) -- Homology of a complex as exterior module
-
makeModule -- makes a Module out of a collection of modules and maps
-
makeModule(HashTable,Matrix,HashTable) -- makes a Module out of a collection of modules and maps
-
makeT -- make the CI operators on a complex
-
makeT(Matrix,ChainComplex,ZZ) -- make the CI operators on a complex
-
matrixFactorization -- Maps in a higher codimension matrix factorization
-
matrixFactorization(...,Augmentation=>...) -- Maps in a higher codimension matrix factorization
-
matrixFactorization(...,Check=>...) -- Maps in a higher codimension matrix factorization
-
matrixFactorization(...,Layered=>...) -- Maps in a higher codimension matrix factorization
-
matrixFactorization(...,Verbose=>...) -- Maps in a higher codimension matrix factorization
-
matrixFactorization(Matrix,Module) -- Maps in a higher codimension matrix factorization
-
mfBound -- determines how high a syzygy to take for "matrixFactorization"
-
mfBound(Module) -- determines how high a syzygy to take for "matrixFactorization"
-
moduleAsExt -- Find a module with given asymptotic resolution
-
moduleAsExt(Module,Ring) -- Find a module with given asymptotic resolution
-
newExt -- Global Ext for modules over a complete Intersection
-
newExt(...,Check=>...) -- Global Ext for modules over a complete Intersection
-
newExt(...,Grading=>...) -- Global Ext for modules over a complete Intersection
-
newExt(...,Lift=>...) -- Global Ext for modules over a complete Intersection
-
newExt(...,Variables=>...) -- Global Ext for modules over a complete Intersection
-
newExt(Module,Module) -- Global Ext for modules over a complete Intersection
-
oddExtModule -- odd part of Ext^*(M,k) over a complete intersection as module over CI operator ring
-
oddExtModule(...,OutRing=>...) -- odd part of Ext^*(M,k) over a complete intersection as module over CI operator ring
-
oddExtModule(Module) -- odd part of Ext^*(M,k) over a complete intersection as module over CI operator ring
-
Optimism -- Option to highSyzygy
-
OutRing -- Option allowing specification of the ring over which the output is defined
-
psiMaps -- list the maps psi(p): B_1(p) --> A_0(p-1) in a matrixFactorization
-
psiMaps(List) -- list the maps psi(p): B_1(p) --> A_0(p-1) in a matrixFactorization
-
regularitySequence -- regularity of Ext modules for a sequence of MCM approximations
-
regularitySequence(List,Module) -- regularity of Ext modules for a sequence of MCM approximations
-
S2 -- Universal map to a module satisfying Serre's condition S2
-
S2(ZZ,Module) -- Universal map to a module satisfying Serre's condition S2
-
Shamash -- Computes the Shamash Complex
-
Shamash(Matrix,ChainComplex,ZZ) -- Computes the Shamash Complex
-
Shamash(Ring,ChainComplex,ZZ) -- Computes the Shamash Complex
-
splittings -- compute the splittings of a split right exact sequence
-
splittings(Matrix,Matrix) -- compute the splittings of a split right exact sequence
-
stableHom -- map from Hom(M,N) to the stable Hom module
-
stableHom(Module,Module) -- map from Hom(M,N) to the stable Hom module
-
sumTwoMonomials -- tally the sequences of BRanks for certain examples
-
sumTwoMonomials(ZZ,ZZ) -- tally the sequences of BRanks for certain examples
-
TateResolution -- TateResolution of a module over an exterior algebra
-
TateResolution(Module) -- TateResolution of a module over an exterior algebra
-
TateResolution(Module,ZZ) -- TateResolution of a module over an exterior algebra
-
TateResolution(Module,ZZ,ZZ) -- TateResolution of a module over an exterior algebra
-
tensorWithComponents -- forms the tensor product, preserving direct sum information
-
tensorWithComponents(Module,Module) -- forms the tensor product, preserving direct sum information
-
toArray -- makes an array from a List or from a single integer
-
toArray(List) -- makes an array from a List or from a single integer
-
toArray(ZZ) -- makes an array from a List or from a single integer
-
twoMonomials -- tally the sequences of BRanks for certain examples
-
twoMonomials(...,Optimism=>...) -- tally the sequences of BRanks for certain examples
-
twoMonomials(ZZ,ZZ) -- tally the sequences of BRanks for certain examples