Given a complex $C$, this method produces the natural quasi-isomorphism from a complex $F$ all of whose terms are free modules to the complex $C$. The algorithm used minimizes the ranks of the free modules in $F$.
i1 : R = ZZ/101[a,b,c]; |
i2 : I = ideal(a^2, a*b, b*c) 2 o2 = ideal (a , a*b, b*c) o2 : Ideal of R |
i3 : C = freeResolution I 1 3 2 o3 = R <-- R <-- R 0 1 2 o3 : Complex |
i4 : f = augmentationMap C 1 o4 = 0 : cokernel | a2 ab bc | <--------- R : 0 | 1 | o4 : ComplexMap |
i5 : assert isWellDefined f |
i6 : assert isComplexMorphism f |
i7 : assert isQuasiIsomorphism f |
i8 : g = resolutionMap complex comodule I 1 o8 = 0 : cokernel | a2 ab bc | <--------- R : 0 | 1 | o8 : ComplexMap |
i9 : assert(f == g) |
The object augmentationMap is a method function.