Both ChainComplexMap and ComplexMap are Macaulay2 types that implement maps between chain complexes. The plan is to replace ChainComplexMap with this new type. Before this happens, this function allows interoperability between these types.
The first example is the minimal free resolution of the twisted cubic curve.
i1 : R = ZZ/101[a..d]; |
i2 : I = monomialCurveIdeal(R, {1,2,3}) 2 2 o2 = ideal (c - b*d, b*c - a*d, b - a*c) o2 : Ideal of R |
i3 : M = R^1/I o3 = cokernel | c2-bd bc-ad b2-ac | 1 o3 : R-module, quotient of R |
i4 : D = freeResolution M 1 3 2 o4 = R <-- R <-- R 0 1 2 o4 : Complex |
i5 : C = resolution M 1 3 2 o5 = R <-- R <-- R <-- 0 0 1 2 3 o5 : ChainComplex |
i6 : g = D.dd 1 3 o6 = 0 : R <------------------------- R : 1 | b2-ac bc-ad c2-bd | 3 2 1 : R <----------------- R : 2 {2} | -c d | {2} | b -c | {2} | -a b | o6 : ComplexMap |
i7 : f = chainComplex g 1 3 o7 = 0 : R <------------------------- R : 1 | b2-ac bc-ad c2-bd | 3 2 1 : R <----------------- R : 2 {2} | -c d | {2} | b -c | {2} | -a b | o7 : ChainComplexMap |
i8 : assert(f == C.dd) |
We construct a random morphism of chain complexes.
i9 : J = ideal vars R o9 = ideal (a, b, c, d) o9 : Ideal of R |
i10 : C1 = resolution(R^1/J) 1 4 6 4 1 o10 = R <-- R <-- R <-- R <-- R <-- 0 0 1 2 3 4 5 o10 : ChainComplex |
i11 : D1 = freeResolution(R^1/J) 1 4 6 4 1 o11 = R <-- R <-- R <-- R <-- R 0 1 2 3 4 o11 : Complex |
i12 : g = randomComplexMap(D1, D, Cycle => true) 1 1 o12 = 0 : R <----------- R : 0 | -16 | 4 3 1 : R <------------------------------------------------------ R : 1 {1} | -19b+45c-34d -19b+8c-3d -10b-22c-47d | {1} | 19a-16b+24c+39d 19a+22c+29d 10a-39c+29d | {1} | -29a-24b-15d -8a-38b-28d 22a+39b-16c-7d | {1} | 34a-39b+15c 19a-29b+28c 47a-13b+7c | 6 2 2 : R <--------------------------------------------- R : 2 {2} | -10a+19b+44c+36d 10b+2c-24d | {2} | -22a+30b+45c-22d b+8c+9d | {2} | 24a-38b+24c+43d 21a+39b+22c+23d | {2} | -47a-33b-12c -11b+44c+34d | {2} | -36a-29b-4c -43a-13b-18c-39d | {2} | -29a-30b-15c 38a-47b-28c+15d | o12 : ComplexMap |
i13 : f = chainComplex g 1 1 o13 = 0 : R <----------- R : 0 | -16 | 4 3 1 : R <------------------------------------------------------ R : 1 {1} | -19b+45c-34d -19b+8c-3d -10b-22c-47d | {1} | 19a-16b+24c+39d 19a+22c+29d 10a-39c+29d | {1} | -29a-24b-15d -8a-38b-28d 22a+39b-16c-7d | {1} | 34a-39b+15c 19a-29b+28c 47a-13b+7c | 6 2 2 : R <--------------------------------------------- R : 2 {2} | -10a+19b+44c+36d 10b+2c-24d | {2} | -22a+30b+45c-22d b+8c+9d | {2} | 24a-38b+24c+43d 21a+39b+22c+23d | {2} | -47a-33b-12c -11b+44c+34d | {2} | -36a-29b-4c -43a-13b-18c-39d | {2} | -29a-30b-15c 38a-47b-28c+15d | o13 : ChainComplexMap |
i14 : assert(g == complex f) |
i15 : assert(isComplexMorphism g) |
This is a temporary method to allow comparisons among the data types, and will be removed once the older data structure is replaced