Complexes : Index
-
- ComplexMap -- perform arithmetic operations on complex maps
-
arithmetic with complex maps -- perform arithmetic operations on complex maps
-
augmentationMap -- map from a free resolution to a module regarded as a complex
-
augmentationMap(Complex) -- map from a free resolution to a module regarded as a complex
-
Base -- make a chain complex
-
Basic invariants and properties -- information about accessing basic features
-
betti(Complex) -- display of degrees in a complex
-
Boundary -- a random map of chain complexes
-
canonicalMap -- gets the natural map arising from various constructions
-
canonicalMap(...,UseTarget=>...) -- gets the natural map arising from various constructions
-
canonicalMap(Complex,Complex) -- gets the natural map arising from various constructions
-
canonicalTruncation -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(Complex,InfiniteNumber,InfiniteNumber) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(Complex,InfiniteNumber,ZZ) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(Complex,Nothing,ZZ) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(Complex,Sequence) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(Complex,ZZ,InfiniteNumber) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(Complex,ZZ,Nothing) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(Complex,ZZ,ZZ) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(ComplexMap,InfiniteNumber,InfiniteNumber) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(ComplexMap,InfiniteNumber,ZZ) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(ComplexMap,Nothing,ZZ) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(ComplexMap,Sequence) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(ComplexMap,ZZ,InfiniteNumber) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(ComplexMap,ZZ,Nothing) -- reducing the number of non-zero terms of a complex
-
canonicalTruncation(ComplexMap,ZZ,ZZ) -- reducing the number of non-zero terms of a complex
-
chainComplex(Complex) -- translate between data types for chain complexes
-
chainComplex(ComplexMap) -- translate between data types for chain complexes
-
coimage(ComplexMap) -- make the coimage of a map of complexes
-
cokernel(ComplexMap) -- make the cokernel of a map of complexes
-
Complex -- the class of all chain complexes
-
complex -- make a chain complex
-
Complex ** Complex -- tensor product of complexes
-
Complex ** ComplexMap -- the map of complexes between tensor complexes
-
Complex ** Matrix -- create the tensor product of a complex and a map of modules
-
Complex ** Module -- tensor product of complexes
-
Complex ** Ring -- tensor a complex along a ring map
-
Complex ** RingMap -- tensor a complex along a ring map
-
Complex ++ Complex -- direct sum of complexes
-
Complex == Complex -- whether two complexes are equal
-
Complex == ZZ -- whether two complexes are equal
-
Complex ^ Array -- the canonical inclusion or projection map of a direct sum
-
Complex ^ ZZ -- access individual object in a complex
-
Complex _ Array -- the canonical inclusion or projection map of a direct sum
-
Complex _ ZZ -- access individual object in a complex
-
Complex Array -- shift a complex or complex map
-
complex(...,Base=>...) -- make a chain complex
-
complex(ChainComplex) -- translate between data types for chain complexes
-
complex(ChainComplexMap) -- translate between data types for chain complex maps
-
complex(Complex) -- make a complex by reindexing the terms of the complex
-
complex(ComplexMap) -- make a complex by specifying the differential
-
complex(HashTable) -- make a chain complex
-
complex(Ideal) -- make a chain complex of length zero
-
complex(List) -- make a chain complex
-
complex(Module) -- make a chain complex of length zero
-
complex(Ring) -- make a chain complex of length zero
-
Complexes -- development package for beta testing new version of chain complexes
-
ComplexMap -- the class of all maps between chain complexes
-
ComplexMap * ComplexMap -- composition of homomorphisms of complexes
-
ComplexMap * Number -- perform arithmetic operations on complex maps
-
ComplexMap * RingElement -- perform arithmetic operations on complex maps
-
ComplexMap ** Complex -- the map of complexes between tensor complexes
-
ComplexMap ** ComplexMap -- the map of complexes between tensor complexes
-
ComplexMap ** Module -- the map of complexes between tensor complexes
-
ComplexMap ** Ring -- tensor a map of complexes along a ring map
-
ComplexMap ** RingMap -- tensor a map of complexes along a ring map
-
ComplexMap + ComplexMap -- perform arithmetic operations on complex maps
-
ComplexMap + Number -- perform arithmetic operations on complex maps
-
ComplexMap + RingElement -- perform arithmetic operations on complex maps
-
ComplexMap ++ ComplexMap -- direct sum of complex maps
-
ComplexMap - ComplexMap -- perform arithmetic operations on complex maps
-
ComplexMap - Number -- perform arithmetic operations on complex maps
-
ComplexMap - RingElement -- perform arithmetic operations on complex maps
-
ComplexMap // ComplexMap -- lift a map of chain complexes along a quasi-isomorphism
-
ComplexMap == ComplexMap -- whether two complex maps are equal
-
ComplexMap == ZZ -- whether two complex maps are equal
-
ComplexMap ^ Array -- the composition with the canonical inclusion or projection map
-
ComplexMap ^ ZZ -- the n-fold composition
-
ComplexMap _ Array -- the composition with the canonical inclusion or projection map
-
ComplexMap _ ZZ -- access individual matrices in a complex map
-
ComplexMap | ComplexMap -- join or concatenate maps horizontally
-
ComplexMap || ComplexMap -- join or concatenate maps vertically
-
ComplexMap Array -- shift a complex or complex map
-
components(Complex) -- list the components of a direct sum
-
components(ComplexMap) -- list the components of a direct sum
-
Concentration -- optional argument used to specify the concentration
-
concentration -- indices on which a complex may be non-zero
-
concentration(Complex) -- indices on which a complex may be non-zero
-
concentration(ComplexMap) -- indices on which a complex map may be non-zero
-
cone(ComplexMap) -- make the mapping cone of a morphism of chain complexes
-
connectingExtMap -- makes the connecting maps in Ext
-
connectingExtMap(...,Concentration=>...) -- makes the connecting maps in Ext
-
connectingExtMap(Matrix,Matrix,Module) -- makes the connecting maps in Ext
-
connectingExtMap(Module,Matrix,Matrix) -- makes the connecting maps in Ext
-
connectingMap -- construct the connecting homomorphism on homology
-
connectingMap(...,Concentration=>...) -- construct the connecting homomorphism on homology
-
connectingMap(ComplexMap,ComplexMap) -- construct the connecting homomorphism on homology
-
connectingTorMap -- makes the connecting maps in Tor
-
connectingTorMap(...,Concentration=>...) -- makes the connecting maps in Tor
-
connectingTorMap(Matrix,Matrix,Module) -- makes the connecting maps in Tor
-
connectingTorMap(Module,Matrix,Matrix) -- makes the connecting maps in Tor
-
Cycle -- a random map of chain complexes
-
cylinder -- make the mapping cylinder of a morphism of chain complexes
-
cylinder(ComplexMap) -- make the mapping cylinder of a morphism of chain complexes
-
degree(ComplexMap) -- get the degree of a map of chain complexes
-
differential of a chain complex -- get the maps between the terms in a complex
-
directSum(Complex) -- direct sum of complexes
-
directSum(ComplexMap) -- direct sum of complex maps
-
dual(Complex) -- make the dual of a complex
-
dual(ComplexMap) -- the dual of a map of complexes
-
extend(Complex,Complex,Matrix) -- extend a map of modules to a map of chain complexes
-
extend(Complex,Complex,Matrix,Sequence) -- extend a map of modules to a map of chain complexes
-
freeResolution -- compute a free resolution of a module or ideal
-
freeResolution(...,DegreeLimit=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,FastNonminimal=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,HardDegreeLimit=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,LengthLimit=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,PairLimit=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,SortStrategy=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,StopBeforeComputation=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,Strategy=>...) -- compute a free resolution of a module or ideal
-
freeResolution(...,SyzygyLimit=>...) -- compute a free resolution of a module or ideal
-
freeResolution(Ideal) -- compute a free resolution of a module or ideal
-
freeResolution(Matrix) -- compute the induced map between free resolutions
-
freeResolution(Module) -- compute a free resolution of a module or ideal
-
freeResolution(MonomialIdeal) -- compute a free resolution of a module or ideal
-
gradedModule(Complex) -- a new complex in which the differential is zero
-
HH Complex -- homology of a complex
-
HH ComplexMap -- induced map on homology or cohomology
-
HH^ZZ Complex -- homology or cohomology module of a complex
-
HH^ZZ ComplexMap -- induced map on homology or cohomology
-
HH_ZZ Complex -- homology or cohomology module of a complex
-
HH_ZZ ComplexMap -- induced map on homology or cohomology
-
Hom(Complex,Complex) -- the complex of homomorphisms between two complexes
-
Hom(Complex,ComplexMap) -- the map of complexes between Hom complexes
-
Hom(Complex,Matrix) -- the map of complexes between Hom complexes
-
Hom(Complex,Module) -- the complex of homomorphisms between two complexes
-
Hom(Complex,Ring) -- the complex of homomorphisms between two complexes
-
Hom(ComplexMap,Complex) -- the map of complexes between Hom complexes
-
Hom(ComplexMap,ComplexMap) -- the map of complexes between Hom complexes
-
Hom(ComplexMap,Matrix) -- the map of complexes between Hom complexes
-
Hom(ComplexMap,Module) -- the map of complexes between Hom complexes
-
Hom(ComplexMap,Ring) -- the map of complexes between Hom complexes
-
Hom(Matrix,Complex) -- the map of complexes between Hom complexes
-
Hom(Matrix,ComplexMap) -- the map of complexes between Hom complexes
-
Hom(Module,Complex) -- the complex of homomorphisms between two complexes
-
Hom(Module,ComplexMap) -- the map of complexes between Hom complexes
-
Hom(Ring,Complex) -- the complex of homomorphisms between two complexes
-
Hom(Ring,ComplexMap) -- the map of complexes between Hom complexes
-
homomorphism'(ComplexMap) -- get the element of Hom from a map of complexes
-
homomorphism(ComplexMap) -- get the homomorphism from an element of Hom
-
homomorphism(ZZ,Matrix,Complex) -- get the homomorphism from an element of Hom
-
homotopyMap -- lift a map of chain complexes along a quasi-isomorphism
-
homotopyMap(ComplexMap) -- lift a map of chain complexes along a quasi-isomorphism
-
horseshoeResolution -- make the horseshoe resolution
-
horseshoeResolution(...,LengthLimit=>...) -- make the horseshoe resolution
-
horseshoeResolution(Complex) -- make the horseshoe resolution
-
horseshoeResolution(Matrix,Matrix) -- make the horseshoe resolution
-
id _ Complex -- the identity map of a chain complex
-
image(ComplexMap) -- make the image of a map of complexes
-
inducedMap(Complex,Complex) -- make the map of complexes induced at each term by the identity map
-
InternalDegree -- a random map of chain complexes
-
isCommutative(ComplexMap) -- whether a complex map commutes with the differentials
-
isComplexMorphism -- whether a complex map is a morphism of complexes
-
isComplexMorphism(ComplexMap) -- whether a complex map is a morphism of complexes
-
isExact -- whether a complex is exact
-
isExact(Complex) -- whether a complex is exact
-
isExact(Complex,InfiniteNumber,InfiniteNumber) -- whether a complex is exact
-
isExact(Complex,InfiniteNumber,Number) -- whether a complex is exact
-
isExact(Complex,Number,InfiniteNumber) -- whether a complex is exact
-
isExact(Complex,Number,Number) -- whether a complex is exact
-
isFree -- whether a complex consists of free modules
-
isFree(Complex) -- whether a complex consists of free modules
-
isHomogeneous(Complex) -- whether a complex is homogeneous
-
isHomogeneous(ComplexMap) -- whether a map of complexes is homogeneous
-
isNullHomotopic -- whether a map of complexes is null-homotopic
-
isNullHomotopic(ComplexMap) -- whether a map of complexes is null-homotopic
-
isNullHomotopyOf -- whether the first map of chain complexes is a null homotopy for the second
-
isNullHomotopyOf(ComplexMap,ComplexMap) -- whether the first map of chain complexes is a null homotopy for the second
-
isQuasiIsomorphism -- whether a map of complexes is a quasi-isomorphism
-
isQuasiIsomorphism(...,Concentration=>...) -- whether a map of complexes is a quasi-isomorphism
-
isQuasiIsomorphism(ComplexMap) -- whether a map of complexes is a quasi-isomorphism
-
isShortExactSequence -- whether a chain complex is a short exact sequence
-
isShortExactSequence(Complex) -- whether a chain complex is a short exact sequence
-
isShortExactSequence(ComplexMap,ComplexMap) -- whether a pair of complex maps forms a short exact sequence
-
isShortExactSequence(Matrix,Matrix) -- whether a pair of matrices forms a short exact sequence
-
isWellDefined(Complex) -- whether a complex is well-defined
-
isWellDefined(ComplexMap) -- whether a map of chain complexes is well-defined
-
kernel(ComplexMap) -- make the kernel of a map of complexes
-
koszulComplex -- makes the Koszul complex
-
koszulComplex(List) -- makes the Koszul complex
-
koszulComplex(List,Concentration=>...) -- makes the Koszul complex
-
koszulComplex(Matrix) -- makes the Koszul complex
-
koszulComplex(Matrix,Concentration=>...) -- makes the Koszul complex
-
length(Complex) -- length of a complex
-
liftMapAlongQuasiIsomorphism -- lift a map of chain complexes along a quasi-isomorphism
-
liftMapAlongQuasiIsomorphism(ComplexMap,ComplexMap) -- lift a map of chain complexes along a quasi-isomorphism
-
longExactSequence -- make the long exact sequence in homology
-
longExactSequence(ComplexMap,ComplexMap) -- make the long exact sequence in homology
-
longExactSequence(ComplexMap,ComplexMap,Concentration=>...) -- make the long exact sequence in homology
-
Making chain complexes -- information about the basic constructors
-
Making maps between chain complexes -- information about the basic constructors
-
map(Complex,Complex,ComplexMap) -- make a new map of chain complexes from an existing one
-
map(Complex,Complex,Function) -- make a map of chain complexes
-
map(Complex,Complex,HashTable) -- make a map of chain complexes
-
map(Complex,Complex,List) -- make a map of chain complexes
-
map(Complex,Complex,ZZ) -- make the zero map or identity between chain complexes
-
Matrix ** Complex -- create the tensor product of a complex and a map of modules
-
max(Complex) -- indices on which a complex may be non-zero
-
min(Complex) -- indices on which a complex may be non-zero
-
minimalPresentation(Complex) -- minimal presentation of all terms in a complex
-
minimalPresentation(ComplexMap) -- minimal presentation of all terms in a complex
-
minimize -- a quasi-isomorphic complex whose terms have minimal rank
-
minimize(Complex) -- a quasi-isomorphic complex whose terms have minimal rank
-
minimizingMap -- a quasi-isomorphic complex whose terms have minimal rank
-
Module ** Complex -- tensor product of complexes
-
Module ** ComplexMap -- the map of complexes between tensor complexes
-
naiveTruncation -- drops all terms of a complex outside a given interval
-
naiveTruncation(Complex,InfiniteNumber,InfiniteNumber) -- drops all terms of a complex outside a given interval
-
naiveTruncation(Complex,InfiniteNumber,ZZ) -- drops all terms of a complex outside a given interval
-
naiveTruncation(Complex,Nothing,ZZ) -- drops all terms of a complex outside a given interval
-
naiveTruncation(Complex,Sequence) -- drops all terms of a complex outside a given interval
-
naiveTruncation(Complex,ZZ,InfiniteNumber) -- drops all terms of a complex outside a given interval
-
naiveTruncation(Complex,ZZ,Nothing) -- drops all terms of a complex outside a given interval
-
naiveTruncation(Complex,ZZ,ZZ) -- drops all terms of a complex outside a given interval
-
naiveTruncation(ComplexMap,InfiniteNumber,InfiniteNumber) -- drops all terms in the source of a complex outside a given interval
-
naiveTruncation(ComplexMap,InfiniteNumber,ZZ) -- drops all terms in the source of a complex outside a given interval
-
naiveTruncation(ComplexMap,Nothing,ZZ) -- drops all terms in the source of a complex outside a given interval
-
naiveTruncation(ComplexMap,Sequence) -- drops all terms in the source of a complex outside a given interval
-
naiveTruncation(ComplexMap,Sequence,Sequence) -- drops all terms in the source of a complex outside a given interval
-
naiveTruncation(ComplexMap,ZZ,InfiniteNumber) -- drops all terms in the source of a complex outside a given interval
-
naiveTruncation(ComplexMap,ZZ,Nothing) -- drops all terms in the source of a complex outside a given interval
-
naiveTruncation(ComplexMap,ZZ,ZZ) -- drops all terms in the source of a complex outside a given interval
-
nullHomotopy -- a map which is a candidate for being a null homotopy
-
nullHomotopy(ComplexMap) -- a map which is a candidate for being a null homotopy
-
Number * ComplexMap -- perform arithmetic operations on complex maps
-
Number + ComplexMap -- perform arithmetic operations on complex maps
-
Number - ComplexMap -- perform arithmetic operations on complex maps
-
part(List,Complex) -- extract a graded component of a complex
-
part(List,ComplexMap) -- extract a graded component of a map of complexes
-
part(ZZ,Complex) -- extract a graded component of a complex
-
part(ZZ,ComplexMap) -- extract a graded component of a map of complexes
-
poincare(Complex) -- assemble degrees of a chain complex into a polynomial
-
poincareN(Complex) -- assemble degrees of a chain complex into a polynomial
-
prune(Complex) -- minimal presentation of all terms in a complex
-
prune(ComplexMap) -- minimal presentation of all terms in a complex
-
quotient(ComplexMap,ComplexMap) -- lift a map of chain complexes along a quasi-isomorphism
-
randomComplexMap -- a random map of chain complexes
-
randomComplexMap(...,Boundary=>...) -- a random map of chain complexes
-
randomComplexMap(...,Cycle=>...) -- a random map of chain complexes
-
randomComplexMap(...,Degree=>...) -- a random map of chain complexes
-
randomComplexMap(...,InternalDegree=>...) -- a random map of chain complexes
-
randomComplexMap(Complex,Complex) -- a random map of chain complexes
-
regularity(Complex) -- compute the Castelnuovo-Mumford regularity
-
resolution(Complex) -- minimal free resolution of a complex
-
resolutionMap -- map from a free resolution to the given complex
-
resolutionMap(...,DegreeLimit=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,FastNonminimal=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,HardDegreeLimit=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,LengthLimit=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,PairLimit=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,SortStrategy=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,StopBeforeComputation=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,Strategy=>...) -- map from a free resolution to the given complex
-
resolutionMap(...,SyzygyLimit=>...) -- map from a free resolution to the given complex
-
resolutionMap(Complex) -- map from a free resolution to the given complex
-
Ring ** Complex -- tensor a complex along a ring map
-
Ring ** ComplexMap -- tensor a map of complexes along a ring map
-
ring(Complex) -- access the ring of a complex or a complex map
-
ring(ComplexMap) -- access the ring of a complex or a complex map
-
RingElement * ComplexMap -- perform arithmetic operations on complex maps
-
RingElement + ComplexMap -- perform arithmetic operations on complex maps
-
RingElement - ComplexMap -- perform arithmetic operations on complex maps
-
RingMap ** Complex -- tensor a complex along a ring map
-
RingMap ** ComplexMap -- tensor a map of complexes along a ring map
-
RingMap Complex -- apply a ring map
-
RingMap ComplexMap -- apply a ring map to a map of complexes
-
source(ComplexMap) -- get the source of a map of chain complexes
-
sum(Complex) -- make the direct sum of all terms
-
sum(ComplexMap) -- make the direct sum of all terms
-
Symbol ^ Complex -- get the maps between the terms in a complex
-
target(ComplexMap) -- get the target of a map of chain complexes
-
tensor(Complex,Complex) -- tensor product of complexes
-
tensor(Complex,RingMap) -- tensor a complex along a ring map
-
tensor(ComplexMap,ComplexMap) -- the map of complexes between tensor complexes
-
tensor(ComplexMap,RingMap) -- tensor a map of complexes along a ring map
-
tensor(RingMap,Complex) -- tensor a complex along a ring map
-
tensor(RingMap,ComplexMap) -- tensor a map of complexes along a ring map
-
tensorAssociativity(Complex,Complex,Complex) -- make the canonical isomorphism arising from associativity
-
tensorCommutativity -- make the canonical isomorphism arising from commutativity
-
tensorCommutativity(Complex,Complex) -- make the canonical isomorphism arising from commutativity
-
tensorCommutativity(Module,Module) -- make the canonical isomorphism arising from commutativity
-
Tor_ZZ(Matrix,Module) -- make the induced map on Tor modules
-
Tor_ZZ(Module,Matrix) -- make the induced map on Tor modules
-
torSymmetry -- makes the canonical isomorphism realizing the symmetry of Tor
-
torSymmetry(ZZ,Module,Module) -- makes the canonical isomorphism realizing the symmetry of Tor
-
Towards computing in the derived category
-
truncate(List,Complex) -- truncation of a complex at a specified degree or set of degrees
-
truncate(List,ComplexMap) -- truncation of a complex map at a specified degree or set of degrees
-
truncate(ZZ,Complex) -- truncation of a complex at a specified degree or set of degrees
-
truncate(ZZ,ComplexMap) -- truncation of a complex map at a specified degree or set of degrees
-
UseTarget -- gets the natural map arising from various constructions
-
Working with Ext -- information about functorial properties
-
Working with Tor -- information about functorial properties
-
yonedaExtension -- creates a chain complex representing an extension of modules
-
yonedaExtension' -- identifies the element of Ext corresponding to an extension
-
yonedaExtension'(Complex) -- identifies the element of Ext corresponding to an extension
-
yonedaExtension(Matrix) -- creates a chain complex representing an extension of modules
-
yonedaMap -- creates a chain complex map representing an extension of modules
-
yonedaMap' -- identifies the element of Ext corresponding to a map of free resolutions
-
yonedaMap'(...,LengthLimit=>...) -- identifies the element of Ext corresponding to a map of free resolutions
-
yonedaMap'(ComplexMap) -- identifies the element of Ext corresponding to a map of free resolutions
-
yonedaMap(...,LengthLimit=>...) -- creates a chain complex map representing an extension of modules
-
yonedaMap(Matrix) -- creates a chain complex map representing an extension of modules
-
yonedaProduct -- make the product of two elements in Ext modules
-
yonedaProduct(Matrix,Matrix) -- make the product of two elements in Ext modules
-
yonedaProduct(Module,Module) -- make the product map between Ext modules
-
ZZ == Complex -- whether two complexes are equal
-
ZZ == ComplexMap -- whether two complex maps are equal