Returns a list of FinitelyGeneratedAbelianGroups with the homology with closed support of C with integer coefficients.
C does not have to be simplicial.
This uses the Convex functions convHull, simplicialsubdiv, pcomplex and homology.
Remark: One should also implement the relative version from Convex.
i1 : C={{{}}, {{{-1, -1, -1, -1}}, {{1, 0, 0, 0}}, {{0, 1, 0, 0}}, {{0, 0, 1,0}}, {{0, 0, 0, 1}}}, {{{-1, -1, -1, -1}, {0, 1, 0, 0}}, {{-1, -1, -1,-1}, {0, 0, 1, 0}}, {{1, 0, 0, 0}, {0, 0, 1, 0}}, {{1, 0, 0, 0}, {0, 0, 0,1}}, {{0, 1, 0, 0}, {0, 0, 0, 1}}}, {}, {}, {}}; |
i2 : mHomology(C) o2 = {} o2 : List |
RP2:
i3 : C= {{{}}, {{{-1, -1, -1, -1, -1}}, {{1, 0, 0, 0, 0}}, {{0, 1, 0, 0, 0}}, {{0, 0, 1, 0, 0}}, {{0, 0, 0, 1, 0}}, {{0, 0, 0, 0, 1}}}, {{{-1, -1, -1, -1,-1}, {1, 0, 0, 0, 0}}, {{-1, -1, -1, -1, -1}, {0, 1, 0, 0, 0}}, {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}}, {{-1, -1, -1, -1, -1}, {0, 0, 1, 0, 0}}, {{1, 0, 0, 0, 0}, {0, 0, 1, 0, 0}}, {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}}, {{-1, -1, -1, -1, -1}, {0, 0, 0, 1, 0}}, {{1, 0, 0, 0, 0}, {0, 0, 0, 1, 0}}, {{0, 1, 0, 0, 0}, {0, 0, 0, 1, 0}}, {{0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, {{-1, -1, -1, -1, -1}, {0, 0, 0, 0, 1}}, {{1, 0, 0, 0, 0}, {0, 0, 0, 0, 1}}, {{0, 1, 0, 0, 0}, {0, 0, 0, 0, 1}}, {{0, 0, 1, 0, 0}, {0, 0, 0, 0, 1}}, {{0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}}}, {{{-1, -1, -1, -1, -1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}}, {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}}, {{-1, -1, -1, -1, -1}, {1, 0, 0, 0, 0}, {0, 0, 0, 1, 0}}, {{-1, -1, -1, -1, -1}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, {{-1, -1, -1, -1, -1}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 1}}, {{-1, -1, -1, -1, -1}, {0, 0, 1, 0, 0}, {0, 0, 0, 0, 1}}, {{1, 0, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 0, 1}}, {{1, 0, 0, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}}, {{0, 1, 0, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}}}, {}, {}, {}}; |
i4 : mHomology(C) o4 = {} o4 : List |
The object mHomology is a method function.