This method computes the inverse rational map using inverse.
i1 : P1 := QQ[a,b]; P4 := QQ[x,y,z,w]; |
i3 : phi = rationalMap({a^4,a^3*b,a^2*b^2,a*b^3,b^4},Dominant=>true) o3 = -- rational map -- source: Proj(QQ[a, b]) target: subvariety of Proj(QQ[t , t , t , t , t ]) defined by 0 1 2 3 4 { 2 t - t t , 3 2 4 t t - t t , 2 3 1 4 t t - t t , 1 3 0 4 2 t - t t , 2 0 4 t t - t t , 1 2 0 3 2 t - t t 1 0 2 } defining forms: { 4 a , 3 a b, 2 2 a b , 3 a*b , 4 b } o3 : RationalMap (dominant rational map from PP^1 to curve in PP^4) |
i4 : isIsomorphism phi o4 = true |