# Cremona -- package for some computations on rational maps between projective varieties

## Description

Cremona is a package to perform some basic computations on rational and birational maps between absolutely irreducible projective varieties over a field $K$. For instance, it provides general methods to compute degrees and projective degrees of rational maps (see degreeMap and projectiveDegrees) and a general method to compute the push-forward to projective space of Segre classes (see SegreClass). Moreover, all the main methods are available both in version probabilistic and in version deterministic, and one can switch from one to the other with the boolean option MathMode.

Let $\Phi:X \dashrightarrow Y$ be a rational map from a subvariety $X=V(I)\subseteq\mathbb{P}^n=Proj(K[x_0,\ldots,x_n])$ to a subvariety $Y=V(J)\subseteq\mathbb{P}^m=Proj(K[y_0,\ldots,y_m])$. Then the map $\Phi$ can be represented, although not uniquely, by a homogeneous ring map $\phi:K[y_0,\ldots,y_m]/J \to K[x_0,\ldots,x_n]/I$ of quotients of polynomial rings by homogeneous ideals. These kinds of ring maps, together with the objects of the RationalMap class, are the typical inputs for the methods in this package. The method toMap (resp. rationalMap) constructs such a ring map (resp. rational map) from a list of $m+1$ homogeneous elements of the same degree in $K[x_0,...,x_n]/I$.

Below is an example using the methods provided by this package, dealing with a birational transformation $\Phi:\mathbb{P}^6 \dashrightarrow \mathbb{G}(2,4)\subset\mathbb{P}^9$ of bidegree $(3,3)$.

 i1 : ZZ/300007[t_0..t_6]; i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}}) -- used 0.00519553 seconds ZZ ZZ 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 o2 = map (------[t ..t ], ------[x ..x ], {- t + 2t t t - t t - t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t , - t t + t t t + t t t - t t t - t t + t t t , - t t t + t t + t t - t t t - t t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t t + t t t - t t - t t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t }) 300007 0 6 300007 0 9 2 1 2 3 0 3 1 4 0 2 4 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 3 4 1 4 2 5 1 3 5 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 4 3 4 5 2 5 3 6 2 4 6 ZZ ZZ o2 : RingMap ------[t ..t ] <--- ------[x ..x ] 300007 0 6 300007 0 9 i3 : time J = kernel(phi,2) -- used 0.200717 seconds o3 = ideal (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 ------------------------------------------------------------------------ - x x + x x , x x - x x + x x ) 1 6 0 8 2 4 1 5 0 7 ZZ o3 : Ideal of ------[x ..x ] 300007 0 9 i4 : time degreeMap phi -- used 0.0467506 seconds o4 = 1 i5 : time projectiveDegrees phi -- used 1.20761 seconds o5 = {1, 3, 9, 17, 21, 15, 5} o5 : List i6 : time projectiveDegrees(phi,NumDegrees=>0) -- used 0.149364 seconds o6 = {5} o6 : List i7 : time phi = toMap(phi,Dominant=>J) -- used 0.004314 seconds ZZ ------[x ..x ] ZZ 300007 0 9 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t + 2t t t - t t - t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t , - t t + t t t + t t t - t t t - t t + t t t , - t t t + t t + t t - t t t - t t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t t + t t t - t t - t t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t }) 300007 0 6 (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 2 1 2 3 0 3 1 4 0 2 4 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 3 4 1 4 2 5 1 3 5 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 4 3 4 5 2 5 3 6 2 4 6 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 ZZ ------[x ..x ] ZZ 300007 0 9 o7 : RingMap ------[t ..t ] <--- ---------------------------------------------------------------------------------------------------- 300007 0 6 (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 i8 : time psi = inverseMap phi -- used 0.852719 seconds ZZ ------[x ..x ] 300007 0 9 ZZ 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x - 2x x x + x x - x x x + x x + x x + x x x - x x x + x x - 2x x x - x x x - 2x x , x x - x x - x x x + x x x + x x x + x x - 2x x x - x x x + x x x , x x - x x x + x x - x x x + x x - x x x - x x x , x - x x x + x x x + x x x - 2x x x - x x x , x x - x x x + x x + x x - x x x - x x x - x x x , x x - x x - x x x + x x + x x x + x x x - 2x x x - x x x + x x x , x - 2x x x - x x x + x x + x x + x x + x x + x x x - 2x x x - x x x - x x x - 2x x }) (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 300007 0 6 2 1 2 3 0 3 1 2 5 0 5 1 6 0 2 6 0 4 6 1 7 0 2 7 0 4 7 0 9 2 3 1 3 1 2 6 0 3 6 0 5 6 1 8 0 2 8 0 4 8 0 1 9 2 3 1 3 6 0 6 0 3 8 1 9 0 2 9 0 4 9 3 1 3 8 0 6 8 1 2 9 0 3 9 0 5 9 3 6 2 3 8 0 8 2 9 1 3 9 0 6 9 0 7 9 3 6 3 8 2 6 8 1 8 2 3 9 2 5 9 1 6 9 1 7 9 0 8 9 6 3 6 8 5 6 8 2 8 4 8 3 9 5 9 2 6 9 4 6 9 2 7 9 4 7 9 0 9 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 ZZ ------[x ..x ] 300007 0 9 ZZ o8 : RingMap ---------------------------------------------------------------------------------------------------- <--- ------[t ..t ] (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 300007 0 6 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 i9 : time isInverseMap(phi,psi) -- used 0.0130591 seconds o9 = true i10 : time degreeMap psi -- used 0.404222 seconds o10 = 1 i11 : time projectiveDegrees psi -- used 10.8778 seconds o11 = {5, 15, 21, 17, 9, 3, 1} o11 : List

We repeat the example using the type RationalMap and using deterministic methods.

 i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}}) -- used 0.00277451 seconds o12 = -- rational map -- ZZ source: Proj(------[t , t , t , t , t , t , t ]) 300007 0 1 2 3 4 5 6 ZZ target: Proj(------[x , x , x , x , x , x , x , x , x , x ]) 300007 0 1 2 3 4 5 6 7 8 9 defining forms: { 3 2 2 - t + 2t t t - t t - t t + t t t , 2 1 2 3 0 3 1 4 0 2 4 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 2 - t + 2t t t - t t - t t + t t t , 3 2 3 4 1 4 2 5 1 3 5 2 2 - t t + t t t + t t t - t t t - t t + t t t , 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 2 - t t t + t t + t t - t t t - t t t + t t t , 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 2 - t t + t t t + t t t - t t - t t t + t t t , 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 3 2 2 - t + 2t t t - t t - t t + t t t 4 3 4 5 2 5 3 6 2 4 6 } o12 : RationalMap (cubic rational map from PP^6 to PP^9) i13 : time phi = rationalMap(phi,Dominant=>2) -- used 0.270799 seconds o13 = -- rational map -- ZZ source: Proj(------[t , t , t , t , t , t , t ]) 300007 0 1 2 3 4 5 6 ZZ target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by 300007 0 1 2 3 4 5 6 7 8 9 { x x - x x + x x , 6 7 5 8 4 9 x x - x x + x x , 3 7 2 8 1 9 x x - x x + x x , 3 5 2 6 0 9 x x - x x + x x , 3 4 1 6 0 8 x x - x x + x x 2 4 1 5 0 7 } defining forms: { 3 2 2 - t + 2t t t - t t - t t + t t t , 2 1 2 3 0 3 1 4 0 2 4 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 2 - t + 2t t t - t t - t t + t t t , 3 2 3 4 1 4 2 5 1 3 5 2 2 - t t + t t t + t t t - t t t - t t + t t t , 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 2 - t t t + t t + t t - t t t - t t t + t t t , 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 2 - t t + t t t + t t t - t t - t t t + t t t , 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 3 2 2 - t + 2t t t - t t - t t + t t t 4 3 4 5 2 5 3 6 2 4 6 } o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9) i14 : time phi^(-1) -- used 1.02429 seconds o14 = -- rational map -- ZZ source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by 300007 0 1 2 3 4 5 6 7 8 9 { x x - x x + x x , 6 7 5 8 4 9 x x - x x + x x , 3 7 2 8 1 9 x x - x x + x x , 3 5 2 6 0 9 x x - x x + x x , 3 4 1 6 0 8 x x - x x + x x 2 4 1 5 0 7 } ZZ target: Proj(------[t , t , t , t , t , t , t ]) 300007 0 1 2 3 4 5 6 defining forms: { 3 2 2 2 2 2 x - 2x x x + x x - x x x + x x + x x + x x x - x x x + x x - 2x x x - x x x - 2x x , 2 1 2 3 0 3 1 2 5 0 5 1 6 0 2 6 0 4 6 1 7 0 2 7 0 4 7 0 9 2 2 2 x x - x x - x x x + x x x + x x x + x x - 2x x x - x x x + x x x , 2 3 1 3 1 2 6 0 3 6 0 5 6 1 8 0 2 8 0 4 8 0 1 9 2 2 2 x x - x x x + x x - x x x + x x - x x x - x x x , 2 3 1 3 6 0 6 0 3 8 1 9 0 2 9 0 4 9 3 x - x x x + x x x + x x x - 2x x x - x x x , 3 1 3 8 0 6 8 1 2 9 0 3 9 0 5 9 2 2 2 x x - x x x + x x + x x - x x x - x x x - x x x , 3 6 2 3 8 0 8 2 9 1 3 9 0 6 9 0 7 9 2 2 2 x x - x x - x x x + x x + x x x + x x x - 2x x x - x x x + x x x , 3 6 3 8 2 6 8 1 8 2 3 9 2 5 9 1 6 9 1 7 9 0 8 9 3 2 2 2 2 2 x - 2x x x - x x x + x x + x x + x x + x x + x x x - 2x x x - x x x - x x x - 2x x 6 3 6 8 5 6 8 2 8 4 8 3 9 5 9 2 6 9 4 6 9 2 7 9 4 7 9 0 9 } o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6) i15 : time degrees phi^(-1) -- used 0.522821 seconds o15 = {5, 15, 21, 17, 9, 3, 1} o15 : List i16 : time degrees phi -- used 0.000043632 seconds o16 = {1, 3, 9, 17, 21, 15, 5} o16 : List i17 : time describe phi -- used 0.00394511 seconds o17 = rational map defined by forms of degree 3 source variety: PP^6 target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 dominance: true birationality: true (the inverse map is already calculated) projective degrees: {1, 3, 9, 17, 21, 15, 5} coefficient ring: ZZ/300007 i18 : time describe phi^(-1) -- used 0.0199419 seconds o18 = rational map defined by forms of degree 3 source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 target variety: PP^6 dominance: true birationality: true (the inverse map is already calculated) projective degrees: {5, 15, 21, 17, 9, 3, 1} number of minimal representatives: 1 dimension base locus: 4 degree base locus: 24 coefficient ring: ZZ/300007 i19 : time (f,g) = graph phi^-1; f; -- used 0.0238332 seconds o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9) i21 : time degrees f -- used 2.59803 seconds o21 = {904, 508, 268, 130, 56, 20, 5} o21 : List i22 : time degree f -- used 0.000022194 seconds o22 = 1 i23 : time describe f -- used 0.00181015 seconds o23 = rational map defined by multiforms of degree {1, 0} source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0}) target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 dominance: true birationality: true projective degrees: {904, 508, 268, 130, 56, 20, 5} coefficient ring: ZZ/300007

A rudimentary version of Cremona has been already used in an essential way in the paper doi:10.1016/j.jsc.2015.11.004 (it was originally named bir.m2).

## Author

• Giovanni Staglianò

## Certification

Version 4.2.2 of this package was accepted for publication in volume 8 of The Journal of Software for Algebra and Geometry on 11 June 2018, in the article A Macaulay2 package for computations with rational maps. That version can be obtained from the journal or from the Macaulay2 source code repository.

## Version

This documentation describes version 5.1 of Cremona.

## Source code

The source code from which this documentation is derived is in the file Cremona.m2. The auxiliary files accompanying it are in the directory Cremona/.

## For the programmer

The object Cremona is .