This function returns true if the two divisors are equal
i1 : R = QQ[x,y]; |
i2 : D = divisor(x*y); o2 : WeilDivisor on R |
i3 : E = divisor(x); o3 : WeilDivisor on R |
i4 : F = divisor(y); o4 : WeilDivisor on R |
i5 : D == E o5 = false |
i6 : D == E+F o6 = true |
Here is an example with rational coefficients compared with integer coefficients.
i7 : R = QQ[x,y]; |
i8 : D = (1/2)*divisor(x) o8 = 1/2*Div(x) o8 : QWeilDivisor on R |
i9 : D == 2*D o9 = false |
i10 : D + D == 2*D o10 = true |
i11 : E = divisor(x) o11 = Div(x) o11 : WeilDivisor on R |
i12 : D == E o12 = false |
i13 : 2*D == E o13 = true |