This function returns the number of height one prime ideals corresponding to the components of a BasicDivisor. Note that if you don't call cleanSupport, this can return primes with coefficient equal to zero.
i1 : R = QQ[x,y,u,v]/ideal(x*y-u*v); |
i2 : D = divisor(x) o2 = Div(v, x) + Div(u, x) o2 : WeilDivisor on R |
i3 : getPrimeCount(D) o3 = 2 |
i4 : E = divisor(x*u) o4 = Div(v, x) + Div(u, y) + 2*Div(u, x) o4 : WeilDivisor on R |
i5 : getPrimeCount(E) o5 = 3 |
i6 : F = divisor({0}, {ideal(x,u)}) o6 = 0*Div(x, u) o6 : WeilDivisor on R |
i7 : getPrimeCount(F) o7 = 1 |
i8 : getPrimeCount(cleanSupport F) o8 = 0 |
i9 : getPrimeCount(1*F) o9 = 0 |
This is equivalent to #primes.
The object getPrimeCount is a method function.