Given two rational divisors, this method returns true if they linearly equivalent after clearing denominators or if some further multiple up to n makes them linearly equivalent. Otherwise it returns false.
i1 : R = QQ[x, y, z] / ideal(x * y - z^2); |
i2 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ) o2 = 3/4*Div(y, z) + 1/2*Div(x, z) o2 : QWeilDivisor on R |
i3 : E = divisor({3/4, 5/2}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ) o3 = 3/4*Div(y, z) + 5/2*Div(x, z) o3 : QWeilDivisor on R |
i4 : isQLinearEquivalent(10, D, E) o4 = true |
In the above ring, every pair of divisors is Q-linearly equivalent because the Weil divisor class group is isomorphic to Z/2. However, if we don't set n high enough, the function will return false.
i5 : R = QQ[x,y,z] / ideal(x * y - z^2); |
i6 : D = divisor(x); o6 : WeilDivisor on R |
i7 : E = divisor(ideal(x,z)); o7 : WeilDivisor on R |
i8 : isQLinearEquivalent(1, D, E) o8 = false |
i9 : isQLinearEquivalent(3, D, E) o9 = true |
If IsGraded=>true (the default is false), then it treats the divisors as if they are divisors on the $Proj$ of their ambient ring.
i10 : R = QQ[x, y, z] / ideal(x * y - z^2); |
i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ) o11 = 1/2*Div(x, z) + 3/4*Div(y, z) o11 : QWeilDivisor on R |
i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ) o12 = -1/4*Div(x, z) + 3/2*Div(y, z) o12 : QWeilDivisor on R |
i13 : isQLinearEquivalent(10, D, E, IsGraded => true) o13 = true |
i14 : isQLinearEquivalent(10, 3*D, E, IsGraded => true) o14 = false |
The object isQLinearEquivalent is a method function with options.