This function returns true if $R/I$ is regular where $R$ is the ambient ring of $I$, otherwise it sets to false.
i1 : R = QQ[x, y, z]; |
i2 : I = ideal(x * y - z^2 ) 2 o2 = ideal(x*y - z ) o2 : Ideal of R |
i3 : isSmooth( I ) o3 = false |
i4 : R = QQ[x, y, u, v]; |
i5 : I = ideal(x * y - u * v) o5 = ideal(x*y - u*v) o5 : Ideal of R |
i6 : isSmooth( I ) o6 = false |
i7 : R = QQ[x, y, z]; |
i8 : J = ideal( x ) o8 = ideal x o8 : Ideal of R |
i9 : isSmooth( J ) o9 = true |
If IsGraded is set to true (default false) then it treats $I$ as an ideal on $Proj R$ (and it assumes $R$ is standard graded over a field). In particular, singularities at the origin (corresponding to the irrelevant ideal) are ignored.
i10 : R = QQ[x, y, z]; |
i11 : I = ideal(x * y - z^2 ) 2 o11 = ideal(x*y - z ) o11 : Ideal of R |
i12 : isSmooth(I) o12 = false |
i13 : isSmooth(I, IsGraded => true) o13 = true |
i14 : R = QQ[x, y, u, v]; |
i15 : I = ideal(x * y - u * v) o15 = ideal(x*y - u*v) o15 : Ideal of R |
i16 : isSmooth(I) o16 = false |
i17 : isSmooth(I, IsGraded => true) o17 = true |
The object isSmooth is a method function with options.