This function returns the positive part of a divisor
i1 : R = QQ[x, y, u, v] / ideal(x * y - u * v); |
i2 : D = divisor({1, -2, 3, -4}, {ideal(x, u), ideal(y, u), ideal(x, v), ideal(y, v)}) o2 = -4*Div(y, v) + Div(x, u) + -2*Div(y, u) + 3*Div(x, v) o2 : WeilDivisor on R |
i3 : positivePart( D ) o3 = Div(x, u) + 3*Div(x, v) o3 : WeilDivisor on R |
i4 : negativePart( D ) o4 = 2*Div(y, u) + 4*Div(y, v) o4 : WeilDivisor on R |
i5 : D == positivePart(D) - negativePart(D) o5 = true |
i6 : E = divisor({0, 1}, {ideal(x,u), ideal(y,u)}) o6 = 0*Div(x, u) + Div(y, u) o6 : WeilDivisor on R |
i7 : positivePart(E) o7 = Div(y, u) o7 : WeilDivisor on R |
i8 : negativePart(E) o8 = 0, the zero divisor o8 : WeilDivisor on R |
i9 : E == positivePart(E) - negativePart(E) o9 = true |
The object positivePart is a method function.