Turn a Weil divisor or a Q-divisor into a R-divisor (or do nothing to a R-divisor).
i1 : R = ZZ/5[x,y]; |
i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)}) o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y) o2 : WeilDivisor on R |
i3 : E = (1/2)*D o3 = -2*Div(x-y) + Div(x) o3 : QWeilDivisor on R |
i4 : F = toRWeilDivisor(D) o4 = -4*Div(x-y) + 2*Div(x) o4 : RWeilDivisor on R |
i5 : G = toRWeilDivisor(E) o5 = -2*Div(x-y) + Div(x) o5 : RWeilDivisor on R |
i6 : F == 2*G o6 = true |
The object toRWeilDivisor is a method function.