Divisor : Index
-
- BasicDivisor -- add or subtract two divisors, or negate a divisor
-
AmbientRing -- an option used to tell divisor construction that a particular ambient ring is expected.
-
applyToCoefficients -- apply a function to the coefficients of a divisor
-
applyToCoefficients(...,CoefficientType=>...) -- apply a function to the coefficients of a divisor
-
applyToCoefficients(...,Safe=>...) -- apply a function to the coefficients of a divisor
-
applyToCoefficients(BasicDivisor,Function) -- apply a function to the coefficients of a divisor
-
baseLocus -- compute the locus where a graded module (or O(D) of a Weil divisor) is not globally generated
-
baseLocus(Module) -- compute the locus where a graded module (or O(D) of a Weil divisor) is not globally generated
-
baseLocus(WeilDivisor) -- compute the locus where a graded module (or O(D) of a Weil divisor) is not globally generated
-
BasicDivisor -- the Types of divisors
-
BasicDivisor + BasicDivisor -- add or subtract two divisors, or negate a divisor
-
BasicDivisor - BasicDivisor -- add or subtract two divisors, or negate a divisor
-
canonicalDivisor -- compute a canonical divisor of a ring
-
canonicalDivisor(...,IsGraded=>...) -- compute a canonical divisor of a ring
-
canonicalDivisor(Ring) -- compute a canonical divisor of a ring
-
ceiling(RWeilDivisor) -- produce a WeilDivisor whose coefficients are ceilings or floors of the divisor
-
cleanSupport -- removes primes with coefficient zero from a divisor
-
cleanSupport(BasicDivisor) -- removes primes with coefficient zero from a divisor
-
clearCache -- creates a new divisor with most entries from the cache removed
-
clearCache(BasicDivisor) -- creates a new divisor with most entries from the cache removed
-
coefficient(BasicList,BasicDivisor) -- get the coefficient of an ideal for a fixed divisor
-
coefficient(Ideal,BasicDivisor) -- get the coefficient of an ideal for a fixed divisor
-
coefficients(BasicDivisor) -- get the list of coefficients of a divisor
-
CoefficientType -- an option used to tell divisor construction that a particular type of coefficients are expected.
-
Divisor -- divisors
-
divisor -- constructor for (Weil/Q/R)-divisors
-
divisor(...,AmbientRing=>...) -- constructor for (Weil/Q/R)-divisors
-
divisor(...,CoefficientType=>...) -- constructor for (Weil/Q/R)-divisors
-
divisor(...,IsGraded=>...) -- constructor for (Weil/Q/R)-divisors
-
divisor(...,Section=>...) -- constructor for (Weil/Q/R)-divisors
-
divisor(BasicList) -- constructor for (Weil/Q/R)-divisors
-
divisor(BasicList,BasicList) -- constructor for (Weil/Q/R)-divisors
-
divisor(Ideal) -- constructor for (Weil/Q/R)-divisors
-
divisor(Matrix) -- constructor for (Weil/Q/R)-divisors
-
divisor(Module) -- constructor for (Weil/Q/R)-divisors
-
divisor(RingElement) -- constructor for (Weil/Q/R)-divisors
-
dualize -- finds an ideal or module isomorphic to Hom(M, R)
-
dualize(...,KnownDomain=>...) -- finds an ideal or module isomorphic to Hom(M, R)
-
dualize(...,Strategy=>...) -- finds an ideal or module isomorphic to Hom(M, R)
-
dualize(Ideal) -- finds an ideal or module isomorphic to Hom(M, R)
-
dualize(Module) -- finds an ideal or module isomorphic to Hom(M, R)
-
embedAsIdeal -- embed a module as an ideal of a ring
-
embedAsIdeal(...,IsGraded=>...) -- embed a module as an ideal of a ring
-
embedAsIdeal(...,MTries=>...) -- embed a module as an ideal of a ring
-
embedAsIdeal(...,ReturnMap=>...) -- embed a module as an ideal of a ring
-
embedAsIdeal(...,Section=>...) -- embed a module as an ideal of a ring
-
embedAsIdeal(Matrix) -- embed a module as an ideal of a ring
-
embedAsIdeal(Module) -- embed a module as an ideal of a ring
-
embedAsIdeal(Ring,Matrix) -- embed a module as an ideal of a ring
-
embedAsIdeal(Ring,Module) -- embed a module as an ideal of a ring
-
findElementOfDegree -- find an element of a specified degree
-
findElementOfDegree(BasicList,Ring) -- find an element of a specified degree
-
findElementOfDegree(ZZ,Ring) -- find an element of a specified degree
-
floor(RWeilDivisor) -- produce a WeilDivisor whose coefficients are ceilings or floors of the divisor
-
gbs -- get the list of Groebner bases corresponding to the height-one primes in the support of a divisor
-
gbs(BasicDivisor) -- get the list of Groebner bases corresponding to the height-one primes in the support of a divisor
-
getLinearDiophantineSolution -- find a solution of the linear Diophantine equation Ax = b
-
getLinearDiophantineSolution(...,Safe=>...) -- find a solution of the linear Diophantine equation Ax = b
-
getLinearDiophantineSolution(BasicList,BasicList) -- find a solution of the linear Diophantine equation Ax = b
-
getLinearDiophantineSolution(BasicList,Matrix) -- find a solution of the linear Diophantine equation Ax = b
-
getPrimeCount -- get the number of height-one primes in the support of the divisor
-
getPrimeCount(BasicDivisor) -- get the number of height-one primes in the support of the divisor
-
getPrimeDivisors -- get the list of prime divisors of a given divisor
-
getPrimeDivisors(BasicDivisor) -- get the list of prime divisors of a given divisor
-
ideal(QWeilDivisor) -- calculate the corresponding module of a divisor and represent it as an ideal
-
ideal(RWeilDivisor) -- calculate the corresponding module of a divisor and represent it as an ideal
-
ideal(WeilDivisor) -- calculate the corresponding module of a divisor and represent it as an ideal
-
idealPower -- compute the ideal generated by the generators of the ideal raised to a power
-
idealPower(ZZ,Ideal) -- compute the ideal generated by the generators of the ideal raised to a power
-
ideals -- a symbol used as a key within the divisor cache
-
IdealStrategy -- a valid value for the Strategy option in dualize or reflexify
-
isCartier -- whether a Weil divisor is Cartier
-
isCartier(...,IsGraded=>...) -- whether a Weil divisor is Cartier
-
isCartier(WeilDivisor) -- whether a Weil divisor is Cartier
-
isDomain -- whether a ring is a domain
-
isDomain(Ring) -- whether a ring is a domain
-
isEffective -- whether a divisor is effective
-
isEffective(BasicDivisor) -- whether a divisor is effective
-
IsGraded -- an option used by numerous functions which tells it to treat the divisors as if we were working on the Proj of the ambient ring.
-
isHomogeneous(BasicDivisor) -- whether the divisor is graded (homogeneous)
-
isLinearEquivalent -- whether two Weil divisors are linearly equivalent
-
isLinearEquivalent(...,IsGraded=>...) -- whether two Weil divisors are linearly equivalent
-
isLinearEquivalent(WeilDivisor,WeilDivisor) -- whether two Weil divisors are linearly equivalent
-
isPrime(BasicDivisor) -- whether a divisor is prime
-
isPrincipal -- whether a Weil divisor is globally principal
-
isPrincipal(...,IsGraded=>...) -- whether a Weil divisor is globally principal
-
isPrincipal(WeilDivisor) -- whether a Weil divisor is globally principal
-
isQCartier -- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
-
isQCartier(...,IsGraded=>...) -- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
-
isQCartier(ZZ,QWeilDivisor) -- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
-
isQCartier(ZZ,WeilDivisor) -- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
-
isQLinearEquivalent -- whether two Q-divisors are linearly equivalent
-
isQLinearEquivalent(...,IsGraded=>...) -- whether two Q-divisors are linearly equivalent
-
isQLinearEquivalent(ZZ,QWeilDivisor,QWeilDivisor) -- whether two Q-divisors are linearly equivalent
-
isReduced -- whether a divisor is reduced
-
isReduced(BasicDivisor) -- whether a divisor is reduced
-
isReflexive -- whether an ideal or module is reflexive
-
isReflexive(...,KnownDomain=>...) -- whether an ideal or module is reflexive
-
isReflexive(...,Strategy=>...) -- whether an ideal or module is reflexive
-
isReflexive(Ideal) -- whether an ideal or module is reflexive
-
isReflexive(Module) -- whether an ideal or module is reflexive
-
isSmooth -- whether R mod the ideal is smooth
-
isSmooth(...,IsGraded=>...) -- whether R mod the ideal is smooth
-
isSmooth(Ideal) -- whether R mod the ideal is smooth
-
isSNC -- whether the divisor is simple normal crossings
-
isSNC(...,IsGraded=>...) -- whether the divisor is simple normal crossings
-
isSNC(BasicDivisor) -- whether the divisor is simple normal crossings
-
isVeryAmple -- whether a divisor is very ample.
-
isVeryAmple(...,Verbose=>...) -- whether a divisor is very ample.
-
isVeryAmple(WeilDivisor) -- whether a divisor is very ample.
-
isWeilDivisor -- whether a rational/real divisor is in actuality a Weil divisor
-
isWeilDivisor(RWeilDivisor) -- whether a rational/real divisor is in actuality a Weil divisor
-
isWellDefined(BasicDivisor) -- whether a divisor is valid
-
isZeroDivisor -- whether the divisor is the zero divisor
-
isZeroDivisor(BasicDivisor) -- whether the divisor is the zero divisor
-
KnownCartier -- an option used to specify to certain functions that we know that the divisor is Cartier
-
KnownDomain -- an option used to specify to certain functions that we know that the ring is a domain
-
mapToProjectiveSpace -- compute the map to projective space associated with the global sections of a Cartier divisor
-
mapToProjectiveSpace(...,KnownCartier=>...) -- compute the map to projective space associated with the global sections of a Cartier divisor
-
mapToProjectiveSpace(...,Variable=>...) -- compute the map to projective space associated with the global sections of a Cartier divisor
-
mapToProjectiveSpace(WeilDivisor) -- compute the map to projective space associated with the global sections of a Cartier divisor
-
ModuleStrategy -- a valid value for the Strategy option in dualize or reflexify
-
MTries -- an option used by embedAsIdeal how many times to try embedding the module as an ideal in a random way.
-
negativePart -- get the effective part or anti-effective part of a divisor
-
negativePart(RWeilDivisor) -- get the effective part or anti-effective part of a divisor
-
nonCartierLocus -- the non-Cartier locus of a Weil divisor
-
nonCartierLocus(...,IsGraded=>...) -- the non-Cartier locus of a Weil divisor
-
nonCartierLocus(WeilDivisor) -- the non-Cartier locus of a Weil divisor
-
NoStrategy -- a valid value for the Strategy option in dualize or reflexify
-
Number * BasicDivisor -- multiply a divisor by a number
-
OO RWeilDivisor -- calculate module corresponding to divisor
-
positivePart -- get the effective part or anti-effective part of a divisor
-
positivePart(RWeilDivisor) -- get the effective part or anti-effective part of a divisor
-
Primes -- a value for the option Strategy for the pullback method
-
primes -- get the list of height-one primes in the support of a divisor
-
primes(BasicDivisor) -- get the list of height-one primes in the support of a divisor
-
pullback -- pullback a divisor under a ring map
-
pullback(...,Strategy=>...) -- pullback a divisor under a ring map
-
pullback(RingMap,RWeilDivisor) -- pullback a divisor under a ring map
-
QQ * RWeilDivisor -- multiply a divisor by a number
-
QQ * WeilDivisor -- multiply a divisor by a number
-
QWeilDivisor -- the Types of divisors
-
ramificationDivisor -- compute the ramification divisor of a finite inclusion of normal domains or a blowup over a smooth base
-
ramificationDivisor(...,IsGraded=>...) -- compute the ramification divisor of a finite inclusion of normal domains or a blowup over a smooth base
-
ramificationDivisor(RingMap) -- compute the ramification divisor of a finite inclusion of normal domains or a blowup over a smooth base
-
reflexify -- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
-
reflexify(...,KnownDomain=>...) -- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
-
reflexify(...,ReturnMap=>...) -- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
-
reflexify(...,Strategy=>...) -- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
-
reflexify(Ideal) -- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
-
reflexify(Module) -- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
-
reflexivePower -- computes a reflexive power of an ideal in a normal domain
-
reflexivePower(...,Strategy=>...) -- computes a reflexive power of an ideal in a normal domain
-
reflexivePower(ZZ,Ideal) -- computes a reflexive power of an ideal in a normal domain
-
ReturnMap -- an option for embedAsIdeal
-
ring(BasicDivisor) -- get the ambient ring of a divisor
-
RR * QWeilDivisor -- multiply a divisor by a number
-
RR * RWeilDivisor -- multiply a divisor by a number
-
RWeilDivisor -- the Types of divisors
-
RWeilDivisor == RWeilDivisor -- whether two divisors are equal
-
Safe -- an option used to tell functions whether not to do checks.
-
Section -- an option used in a number of functions
-
Sheaves -- a value for the option Strategy for the pullback method
-
toQWeilDivisor -- create a Q-Weil divisor from a Weil divisor
-
toQWeilDivisor(QWeilDivisor) -- create a Q-Weil divisor from a Weil divisor
-
toQWeilDivisor(WeilDivisor) -- create a Q-Weil divisor from a Weil divisor
-
torsionSubmodule -- create the torsion submodule of a module
-
torsionSubmodule(...,KnownDomain=>...) -- create the torsion submodule of a module
-
torsionSubmodule(...,Strategy=>...) -- create the torsion submodule of a module
-
torsionSubmodule(Module) -- create the torsion submodule of a module
-
toRWeilDivisor -- create a R-divisor from a Q or Weil divisor
-
toRWeilDivisor(QWeilDivisor) -- create a R-divisor from a Q or Weil divisor
-
toRWeilDivisor(RWeilDivisor) -- create a R-divisor from a Q or Weil divisor
-
toRWeilDivisor(WeilDivisor) -- create a R-divisor from a Q or Weil divisor
-
toWeilDivisor -- create a Weil divisor from a Q or R-divisor
-
toWeilDivisor(RWeilDivisor) -- create a Weil divisor from a Q or R-divisor
-
trim(BasicDivisor) -- trims the ideals displayed to the user and removes primes with coefficient zero
-
WeilDivisor -- the Types of divisors
-
zeroDivisor -- constructs the zero Weil divisor for the ring
-
zeroDivisor(Ring) -- constructs the zero Weil divisor for the ring