kOrderAnnFa (kOrderAnnFs) return an ideal generated by elements of order at most $k$ of the annihilator of $f^a$ ($f^s$). See [Castro-Jimenez, Leykin "Computing localizations iteratively" (2012)] for details.
i1 : R = QQ[x_1,x_2]; f = x_1^2-x_2^3; |
i3 : A1 = kOrderAnnFa(1,f,-1) 2 3 2 2 o3 = ideal (3x dx + 2x dx + 6, 3x dx + 2x dx , x dx - x dx + 3x ) 1 1 2 2 2 1 1 2 2 2 1 2 2 o3 : Ideal of QQ[x ..x , dx ..dx ] 1 2 1 2 |
i4 : As = kOrderAnnFs(1,f) 2 o4 = ideal (3x dx + 2x dx , 6s - 3x dx - 2x dx ) 2 1 1 2 1 1 2 2 o4 : Ideal of QQ[x ..x , dx ..dx , s] 1 2 1 2 |
The object kOrderAnnFa is a method function.