Given a polynomial ring R with variables x_1,..,x_n, this routine returns a Weyl algebra with variables x_1,..,x_n and dx_1,..,dx_n.
i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : D = makeWeylAlgebra R o2 = D o2 : PolynomialRing, 3 differential variables |
To skip naming the ring, use parentheses.
i3 : makeWA(QQ[x,y,z]) o3 = QQ[x..z, dx, dy, dz] o3 : PolynomialRing, 3 differential variables |
The polynomial ring R must be commutative.
The object makeWeylAlgebra is a method function with options.