# solveFrobeniusIdeal -- solving Frobenius ideals

## Synopsis

• Usage:
solveFrobeniusIdeal I
• Inputs:
• I, a Frobenius ideal which is m-primary
• Outputs:
• a list, a list of polynomials in logarithms of the variable

## Description

See [SST, Algorithm 2.3.14].

Here is [SST, Example 2.3.16]:

 i1 : R = QQ[t_1..t_5]; i2 : I = ideal(R_0+R_1+R_2+R_3+R_4, R_0+R_1-R_3, R_1+R_2-R_3, R_0*R_2, R_1*R_3); o2 : Ideal of R i3 : netList solveFrobeniusIdeal I +------------------------------------------------------------------------------+ o3 = |1 | +------------------------------------------------------------------------------+ |- 2t + 3t - 2t + t | | 1 2 3 4 | +------------------------------------------------------------------------------+ |- t + t - t + t | | 1 2 3 5 | +------------------------------------------------------------------------------+ |1 1 2 1 1 1 1 2 1 1 1 3 2| |-t t - -t + -t t + -t t + -t t + -t - -t t - -t t - -t t - -t t + t | |4 1 2 8 2 4 2 3 4 1 4 4 3 4 8 4 2 1 5 4 2 5 2 3 5 4 4 5 5| +------------------------------------------------------------------------------+

## Ways to use solveFrobeniusIdeal :

• "solveFrobeniusIdeal(Ideal)"

## For the programmer

The object solveFrobeniusIdeal is .