With the option Transpose => true, picture prints the picture of the transposed matrix; when the matrix has many more columns than rows this makes it easier to read.
i1 : S = ZZ/101[a,b] o1 = S o1 : PolynomialRing |
i2 : R = S/ideal"a2,b2" o2 = R o2 : QuotientRing |
i3 : E = eagon(R,3) o3 = EagonData in <ring>.cache computed to length 3 o3 : EagonData |
i4 : picture res E +----------------------------+ |+-------+-------+ | o4 = || |(1, {})| | |+-------+-------+ | ||(0, {})| * | | |+-------+-------+ | +----------------------------+ |+-------+-------+--------+ | || |(2, {})|(0, {1})| | |+-------+-------+--------+ | ||(1, {})| * | * | | |+-------+-------+--------+ | +----------------------------+ |+--------+--------+--------+| || |(0, {2})|(1, {1})|| |+--------+--------+--------+| || (2, {})| * | * || |+--------+--------+--------+| ||(0, {1})| . | * || |+--------+--------+--------+| +----------------------------+ |
i5 : picture(res E, Transpose => true) +---------------------------+ |+-------+-------+ | o5 = || |(0, {})| | |+-------+-------+ | ||(1, {})| * | | |+-------+-------+ | +---------------------------+ |+--------+-------+ | || |(1, {})| | |+--------+-------+ | || (2, {})| * | | |+--------+-------+ | ||(0, {1})| * | | |+--------+-------+ | +---------------------------+ |+--------+-------+--------+| || |(2, {})|(0, {1})|| |+--------+-------+--------+| ||(0, {2})| * | . || |+--------+-------+--------+| ||(1, {1})| * | * || |+--------+-------+--------+| +---------------------------+ |