This function takes a (hyper)graph, and returns the edge set of the (hyper)graph.
i1 : S = QQ[a..d]; |
i2 : g = graph {a*b,b*c,c*d,d*a} -- the four cycle o2 = Graph{edges => {{a, b}, {b, c}, {a, d}, {c, d}}} ring => S vertices => {a, b, c, d} o2 : Graph |
i3 : edges g o3 = {{a, b}, {b, c}, {a, d}, {c, d}} o3 : List |
i4 : h = hyperGraph{a*b*c} o4 = HyperGraph{edges => {{a, b, c}} } ring => S vertices => {a, b, c, d} o4 : HyperGraph |
i5 : edges h o5 = {{a, b, c}} o5 : List |
i6 : k4 = completeGraph S o6 = Graph{edges => {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}} ring => S vertices => {a, b, c, d} o6 : Graph |
i7 : edges k4 o7 = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}} o7 : List |
The object edges is a method function.