If F is an equivariant Gröbner basis for invariant ideal I with respect to a width order then this method produces a traditional Gröbner basis for the nth truncation of I.
If the optional argument Symmetrize is set to true, then the full S_n orbit is produced.
i1 : R = buildERing({symbol x}, {1}, QQ, 2); |
i2 : O = incOrbit(x_0^2, 4) 2 2 2 2 o2 = {x , x , x , x } 0 1 2 3 o2 : List |
i3 : P = incOrbit(x_0 + x_1^2, 3, Symmetrize=>true) 2 2 2 2 2 2 o3 = {x + x , x + x , x + x , x + x , x + x , x + x } 1 0 1 0 2 0 2 0 2 1 2 1 o3 : List |
The output is not necessarily in the same ring as the input. The width bound of the ring of the output will always be n.
The object incOrbit is a method function with options.