This method computes the sum of two equivariant $K$-classes.
i1 : Gr24 = generalizedFlagVariety("A",3,{2}); --the Grassmannian of projective lines in projective 3-space |
i2 : O1 = ampleKClass Gr24 -- the O(1) bundle on Gr24 as an equivariant K-class o2 = an equivariant K-class on a GKM variety o2 : KClass |
i3 : E = O1 + (O1*O1) o3 = an equivariant K-class on a GKM variety o3 : KClass |
i4 : peek E o4 = KClass{variety => a GKM variety with an action of a 4-dimensional torus} 2 2 KPolynomials => HashTable{{set {0, 1}} => T T + T T } 0 1 0 1 2 2 {set {0, 2}} => T T + T T 0 2 0 2 2 2 {set {0, 3}} => T T + T T 0 3 0 3 2 2 {set {1, 2}} => T T + T T 1 2 1 2 2 2 {set {1, 3}} => T T + T T 1 3 1 3 2 2 {set {2, 3}} => T T + T T 2 3 2 3 |