Given a GKM variety $X$ this method constructs a EquivariantMap representing the diagonal morphism $X \to X \times X$. Note that $X \times X$ is a GKM variety via the diagonal action of the torus.
i1 : X = generalizedFlagVariety("A",3,{2}); -- The Grassmannian Gr(2,4) |
i2 : f = diagonalMap X; |
i3 : peek f o3 = EquivariantMap{cache => CacheTable{} } ptsMap => HashTable{{set {0, 1}} => ({set {0, 1}}, {set {0, 1}})} {set {0, 2}} => ({set {0, 2}}, {set {0, 2}}) {set {0, 3}} => ({set {0, 3}}, {set {0, 3}}) {set {1, 2}} => ({set {1, 2}}, {set {1, 2}}) {set {1, 3}} => ({set {1, 3}}, {set {1, 3}}) {set {2, 3}} => ({set {2, 3}}, {set {2, 3}}) source => a GKM variety with an action of a 4-dimensional torus target => a GKM variety with an action of a 4-dimensional torus |
The object diagonalMap is a method function.