Example: a complete intersection of type (3,3) in P^3
i1 : R = QQ[a..d]; |
i2 : I = ideal(a^3+c^2*d, b^3-a*d^2); o2 : Ideal of R |
i3 : gin(I) 3 2 3 5 o3 = ideal (a , a b, a*b , b ) o3 : Ideal of R |
The Stanley-Reisner ideal of RP^2
i4 : R = QQ[x0,x1,x2,x3,x4,x5] o4 = R o4 : PolynomialRing |
i5 : M = matrix {{x1*x3*x4, x0*x3*x4, x1*x2*x4, x0*x2*x3, x0*x1*x2, x2*x4*x5, x0*x4*x5, x2*x3*x5, x1*x3*x5, x0*x1*x5}} --Stanley-Reisner ideal of RP^2 o5 = | x1x3x4 x0x3x4 x1x2x4 x0x2x3 x0x1x2 x2x4x5 x0x4x5 x2x3x5 x1x3x5 x0x1x5 ------------------------------------------------------------------------ | 1 10 o5 : Matrix R <--- R |
i6 : I=ideal flatten entries M o6 = ideal (x1*x3*x4, x0*x3*x4, x1*x2*x4, x0*x2*x3, x0*x1*x2, x2*x4*x5, ------------------------------------------------------------------------ x0*x4*x5, x2*x3*x5, x1*x3*x5, x0*x1*x5) o6 : Ideal of R |
i7 : J=(ideal{x0,x1,x2})^3 3 2 2 2 2 3 2 2 o7 = ideal (x0 , x0 x1, x0 x2, x0*x1 , x0*x1*x2, x0*x2 , x1 , x1 x2, x1*x2 , ------------------------------------------------------------------------ 3 x2 ) o7 : Ideal of R |
i8 : assert(gin(I)==J) |
Example 1.10 from Conca, De Negri, Gorla 'Cartwright-Sturmfels ideals associated to graphs and linear spaces'.
i9 : R = QQ[x_1..x_3,y_1..y_3, Degrees=>{{1,0},{1,0},{1,0},{0,1},{0,1},{0,1}}]; |
i10 : I = ideal(x_1*y_1,x_2*y_2,x_3*y_2,x_2*y_3,x_3*y_3); o10 : Ideal of R |
i11 : gin(I) 2 2 3 2 o11 = ideal (x , x x , x , x x , x x , x , x y ) 1 1 2 2 1 3 2 3 3 3 1 o11 : Ideal of R |
i12 : gin(I, Multigraded => true) 2 o12 = ideal (x y , x y , x y , x y , x y , x y , x x y ) 1 1 2 1 3 1 1 2 2 2 1 3 1 2 3 o12 : Ideal of R |
This symbol is provided by the package GenericInitialIdeal.
The object gin is a method function with options.