The composition of maps $g*d$ is a derivation $M\ \to\ N$, with the composition $g*f$ defining the module structure of $N$ over $M$, where $f: M\ \to\ L$ defines the module structure of $L$ over $M$.
i1 : L = lieAlgebra{a,b} o1 = L o1 : LieAlgebra |
i2 : d = lieDerivation{a a b,b b a} o2 = d o2 : LieDerivation |
i3 : describe d o3 = a => - (a b a) b => (b b a) map => id_L sign => 0 weight => {2, 0} source => L target => L |
i4 : N = lieAlgebra{a1,b1} o4 = N o4 : LieAlgebra |
i5 : g = map(N,L,{b1,a1}) o5 = g o5 : LieAlgebraMap |
i6 : h = g*d o6 = h o6 : LieDerivation |
i7 : describe h o7 = a => (b1 b1 a1) b => - (a1 b1 a1) map => g sign => 0 weight => {2, 0} source => L target => N |