If both $A$ and $B$ are instances of LieIdeal, then $S$ is of tyoe LieIdeal. If both $A$ and $B$ are instances of LieSubAlgebra but not both of LieIdeal, then $S$ is of tyoe LieSubAlgebra. Otherwise, $S$ is of tyoe LieSubSpace.
i1 : L = lieAlgebra{a,b,c} o1 = L o1 : LieAlgebra |
i2 : A=lieIdeal{a} o2 = A o2 : FGLieIdeal |
i3 : B=lieIdeal{b} o3 = B o3 : FGLieIdeal |
i4 : S=A@B o4 = S o4 : LieIdeal |
i5 : basis(3,S) o5 = {(a b a), (b b a), (c b a), (b c a)} o5 : List |
i6 : T=A+B o6 = T o6 : FGLieIdeal |
i7 : dims(1,3,L/T) o7 = {1, 0, 0} o7 : List |
i8 : dims(1,5,L/A@B) o8 = {3, 2, 4, 6, 12} o8 : List |
i9 : dims(1,5,L/A++L/B) o9 = {4, 2, 4, 6, 12} o9 : List |