i1 : L = lieAlgebra({a,b,c},Weights=>{{1,0},{2,1},{3,2}}, Signs=>{1,1,1},LastWeightHomological=>true) o1 = L o1 : LieAlgebra |
i2 : D= differentialLieAlgebra({0_L,a a,a b}) o2 = D o2 : LieAlgebra |
i3 : J=lieIdeal({b b + 4 a c}) o3 = J o3 : FGLieIdeal |
i4 : Q=D/J o4 = Q o4 : LieAlgebra |
i5 : dims(7,Q) o5 = | 1 1 0 0 0 0 0 | | 0 1 1 1 1 1 1 | | 0 0 1 1 1 1 2 | | 0 0 0 0 1 1 2 | | 0 0 0 0 0 1 1 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | 7 7 o5 : Matrix ZZ <--- ZZ |
i6 : Z=cycles Q o6 = Z o6 : LieSubAlgebra |
i7 : dims(5,Z) o7 = | 1 1 0 0 0 | | 0 0 1 1 1 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | 5 5 o7 : Matrix ZZ <--- ZZ |
i8 : H=lieHomology Q o8 = H o8 : VectorSpace |
i9 : dims(1,5,H) o9 = {1, 0, 0, 0, 1} o9 : List |
i10 : E=extAlgebra(5,Q) o10 = E o10 : ExtAlgebra |
i11 : dims(4,E) o11 = | 1 0 0 0 | | 0 1 0 0 | | 0 0 1 0 | | 0 0 0 1 | 4 4 o11 : Matrix ZZ <--- ZZ |
The object dims is a method function.