i1 : L=holonomy({{a0,a1,a2,a3},{a0,a4,a5},{a1,a4,a6}}) o1 = L o1 : LieAlgebra |
i2 : describe L o2 = generators => {a0, a1, a2, a3, a4, a5, a6} Weights => {{1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 0}} Signs => {0, 0, 0, 0, 0, 0, 0} ideal => {(a1 a0) - (a2 a1) - (a3 a1), (a2 a0) + (a2 a1) - (a3 a2), (a3 a0) + (a3 a1) + (a3 a2), (a4 a0) - (a5 a4), (a5 a0) + (a5 a4), (a4 a1) - (a6 a4), (a6 a1) + (a6 a4), (a4 a2), (a4 a3), (a5 a1), (a5 a2), (a5 a3), (a6 a0), (a6 a2), (a6 a3), (a6 a5)} ambient => LieAlgebra{...10...} diff => {} Field => QQ computedDegree => 0 |
i3 : dims(1,4,L) o3 = {7, 5, 12, 24} o3 : List |
i4 : M=holonomy({{a1,a2,a3},{a4,a5}},{{a1,a4,a6}}) o4 = M o4 : LieAlgebra |
i5 : describe M o5 = generators => {a1, a2, a3, a4, a5, a6} Weights => {{1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 0}} Signs => {0, 0, 0, 0, 0, 0} ideal => {(a4 a1) - (a6 a4), (a6 a1) + (a6 a4), (a4 a2), (a4 a3), (a5 a1), (a5 a2), (a5 a3), (a6 a2), (a6 a3), (a6 a5)} ambient => LieAlgebra{...10...} diff => {} Field => QQ computedDegree => 0 |
i6 : dims(1,4,M) o6 = {6, 5, 12, 24} o6 : List |
The object holonomy is a method function with options.