The output is either the list of generators of the ideal or the ideal itself of type LieIdeal.
i1 : L=lieAlgebra{a,b}/{a a a b,b b b a} o1 = L o1 : LieAlgebra |
i2 : ideal L o2 = { - (a a b a), (b b b a)} o2 : List |
i3 : describe L o3 = generators => {a, b} Weights => {{1, 0}, {1, 0}} Signs => {0, 0} ideal => { - (a a b a), (b b b a)} ambient => LieAlgebra{...10...} diff => {} Field => QQ computedDegree => 0 |
i4 : F=lieAlgebra{a,b} o4 = F o4 : LieAlgebra |
i5 : f=map(L,F) o5 = f o5 : LieAlgebraMap |
i6 : J=kernel f o6 = J o6 : LieIdeal |
i7 : N=F/J o7 = N o7 : LieAlgebra |
i8 : ideal N o8 = J o8 : LieIdeal |