If $d$ is a differential on a Lie algebra $L$ and $S$ is an ideal in $L$, then image(d,S) is of type LieSubAlgebra. Otherwise, image(d,S) is of type LieSubSpace.
i1 : F=lieAlgebra({a,b,c,r3,r4,r42}, Weights => {{1,0},{1,0},{2,0},{3,1},{4,1},{4,2}},Signs=>{0,0,0,1,1,0}, LastWeightHomological=>true) o1 = F o1 : LieAlgebra |
i2 : D=differentialLieAlgebra{0_F,0_F,0_F,a c,a a c,r4 - a r3} o2 = D o2 : LieAlgebra |
i3 : S=lieIdeal{a r3} o3 = S o3 : FGLieIdeal |
i4 : d=differential D o4 = d o4 : LieDerivation |
i5 : T=image(d,S) o5 = T o5 : LieSubAlgebra |
i6 : basis(5,T) o6 = {(b a a c), (a a a c)} o6 : List |