List of matrices whose 2x2 minors form the conditional independence ideal of the independence statements on the list $S$. This method is used in conditionalIndependenceIdeal, it is exported to be able to read independence constraints as minors of matrices instead of their polynomial expansions.
i1 : S = {{{1},{3},{4}}} o1 = {{{1}, {3}, {4}}} o1 : List |
i2 : R = markovRing (4:2) o2 = R o2 : PolynomialRing |
i3 : compactMatrixForm =false; |
i4 : netList markovMatrices (R,S) +----------------------------------------------+ o4 = || p + p p + p || || 1,1,1,1 1,2,1,1 1,1,2,1 1,2,2,1 || || || || p + p p + p || || 2,1,1,1 2,2,1,1 2,1,2,1 2,2,2,1 || +----------------------------------------------+ || p + p p + p || || 1,1,1,2 1,2,1,2 1,1,2,2 1,2,2,2 || || || || p + p p + p || || 2,1,1,2 2,2,1,2 2,1,2,2 2,2,2,2 || +----------------------------------------------+ |
Here is an example where the independence statements are extracted from a graph.
i5 : G = graph{{a,b},{b,c},{c,d},{a,d}} o5 = Graph{a => {b, d}} b => {a, c} c => {b, d} d => {a, c} o5 : Graph |
i6 : S = localMarkov G o6 = {{{a}, {c}, {d, b}}, {{b}, {d}, {c, a}}} o6 : List |
i7 : R = markovRing (4:2) o7 = R o7 : PolynomialRing |
i8 : markovMatrices (R,S,vertices G) o8 = {| p p |, | p p |, | p | 1,1,1,1 1,1,2,1 | | 1,1,1,2 1,1,2,2 | | 1,2,1,1 | | | | | | p p | | p p | | p | 2,1,1,1 2,1,2,1 | | 2,1,1,2 2,1,2,2 | | 2,2,1,1 ------------------------------------------------------------------------ p |, | p p |, | p p |, | 1,2,2,1 | | 1,2,1,2 1,2,2,2 | | 1,1,1,1 1,1,1,2 | | | | | | | | p | | p p | | p p | | 2,2,2,1 | | 2,2,1,2 2,2,2,2 | | 1,2,1,1 1,2,1,2 | | ------------------------------------------------------------------------ p p |, | p p |, | p p 1,1,2,1 1,1,2,2 | | 2,1,1,1 2,1,1,2 | | 2,1,2,1 2,1,2,2 | | | | p p | | p p | | p p 1,2,2,1 1,2,2,2 | | 2,2,1,1 2,2,1,2 | | 2,2,2,1 2,2,2,2 ------------------------------------------------------------------------ |} | | | | o8 : List |
In case the random variables are not numbered $1, 2, \dots, n$, then this method requires an additional input in the form of a list of the random variable names. This list must be in the same order as the implicit order used in the sequence $d$. The user is encouraged to read the caveat on the method conditionalIndependenceIdeal regarding probability distributions on discrete random variables that have been labeled arbitrarily.
The object markovMatrices is a method function.