Give a homogeneous ideal $I$, the $r$-th Hadamard power of $I$ is $r$-times Hadamard product of I to itself; $( I x\cdots x I)_{r-times}$
i1 : S=QQ[x,y,z,w] o1 = S o1 : PolynomialRing |
i2 : I=ideal(random(1,S),random(1,S),random(1,S)) 9 1 9 1 3 3 3 7 7 7 1 o2 = ideal (-x + -y + -z + -w, x + -y + -z + -w, -x + -y + --z + -w) 2 2 4 2 4 2 4 4 9 10 2 o2 : Ideal of S |
i3 : hadamardPower(I,3) o3 = ideal (731189187729z + 12167000000w, 1003003001y + 217081801w, ------------------------------------------------------------------------ 27081081027x - 15625000w) o3 : Ideal of S |