next
|
previous
|
forward
|
backward
| up |
top
|
index
|
toc
|
Macaulay2 website
HyperplaneArrangements
::
CentralArrangement
CentralArrangement -- class of central hyperplane arrangements
Description
A central arrangement is a finite set of linear hyperplanes.
Functions and methods returning a central hyperplane arrangement :
cone(Arrangement,RingElement)
-- Cone of an arrangement
cone(Arrangement,Symbol)
(missing documentation)
dual(CentralArrangement)
-- the Gale dual of A
Methods that use a central hyperplane arrangement :
"deCone(CentralArrangement,RingElement)"
-- see
deCone
-- produce an affine arrangement from a central one
"deCone(CentralArrangement,ZZ)"
-- see
deCone
-- produce an affine arrangement from a central one
"der(CentralArrangement)"
-- see
der
-- Module of logarithmic derivations
"der(CentralArrangement,List)"
-- see
der
-- Module of logarithmic derivations
"isDecomposable(CentralArrangement)"
-- see
isDecomposable
-- test if an arrangement is decomposable
"isDecomposable(CentralArrangement,Ring)"
-- see
isDecomposable
-- test if an arrangement is decomposable
"lct(CentralArrangement)"
-- see
lct
-- Compute the log-canonical threshold of an arrangement
"multIdeal(QQ,CentralArrangement)"
-- see
multIdeal
-- compute a multiplier ideal
"multIdeal(QQ,CentralArrangement,List)"
-- see
multIdeal
-- compute a multiplier ideal
"multIdeal(ZZ,CentralArrangement)"
-- see
multIdeal
-- compute a multiplier ideal
"multIdeal(ZZ,CentralArrangement,List)"
-- see
multIdeal
-- compute a multiplier ideal
orlikSolomon(CentralArrangement,PolynomialRing)
(missing documentation)
"orlikTerao(CentralArrangement)"
-- see
orlikTerao
-- defining ideal for the Orlik-Terao algebra
"orlikTerao(CentralArrangement,PolynomialRing)"
-- see
orlikTerao
-- defining ideal for the Orlik-Terao algebra
"orlikTerao(CentralArrangement,Symbol)"
-- see
orlikTerao
-- defining ideal for the Orlik-Terao algebra
For the programmer
The object
CentralArrangement
is
a
type
, with ancestor classes
Arrangement
<
HashTable
<
Thing
.