The idealizer of $I$, computed as target F, is the largest subring of the fraction field of ring I in which $I$ is still an ideal. Note that this is NOT the common use of the term in commutative algebra.
This is a key subroutine used in the computation of integral closures.
i1 : R = QQ[x,y]/(y^3-x^7) o1 = R o1 : QuotientRing |
i2 : I = ideal(x^2,y^2) 2 2 o2 = ideal (x , y ) o2 : Ideal of R |
i3 : (F,G) = idealizer(I,x^2); |
i4 : target F QQ[w , x..y] 0,0 o4 = ------------------------------------- 2 2 2 3 5 (w x - y , w - x y, w y - x ) 0,0 0,0 0,0 o4 : QuotientRing |
i5 : first entries G.matrix 2 y o5 = {--, x, y} 2 x o5 : List |
The object idealizer is a method function with options.