Serious restriction: It is assumed that this ring R[1/f H] is an endomorphism ring of an ideal in $R$. This means that the Groebner basis, in a product order, will have lead terms all quadratic monomials in the new variables, together with other elements which are degree 0 or 1 in the new variables.
i1 : R = QQ[x,y]/(y^2-x^3) o1 = R o1 : QuotientRing |
i2 : H = (y * ideal(x,y)) : ideal(x,y) 2 o2 = ideal (y, x ) o2 : Ideal of R |
i3 : (F,G) = ringFromFractions(((gens H)_{1}), H_0); |
i4 : S = target F o4 = S o4 : QuotientRing |
i5 : F o5 = map (S, R, {x, y}) o5 : RingMap S <--- R |
i6 : G y o6 = map (frac R, frac S, {-, x, y}) x o6 : RingMap frac R <--- frac S |
The object ringFromFractions is a method function with options.